98%
921
2 minutes
20
The polyamines spermidine and spermine and their common precursor molecule putrescine are involved in tissue injury and repair. Here, we test the hypothesis that impaired polyamine homeostasis contributes to various kidney pathologies in mice during experimental models of ischemia-reperfusion, transplantation, rhabdomyolysis, cyclosporine treatment, arterial hypertension, diabetes, unilateral ureteral obstruction, high oxalate feeding, and adenine-induced injuries. We found a remarkably similar pattern in most kidney pathologies with reduced expression of enzymes involved in polyamine synthesis together with increased expression of polyamine degrading enzymes. Transcript levels of amine oxidase copper-containing 1 (Aoc1), an enzyme which catalyzes the breakdown of putrescine, were barely detectable by in situ mRNA hybridization in healthy kidneys. Aoc1 was highly expressed upon various experimental kidney injuries resulting in a significant reduction of kidney putrescine content. Kidney levels of spermine were also significantly reduced, whereas spermidine was increased in response to ischemia-reperfusion injury. Increased Aoc1 expression in injured kidneys was mainly accounted for by an Aoc1 isoform that harbors 22 additional amino acids at its N-terminus and shows increased secretion. Mice with germline deletion of Aoc1 and injured kidneys showed no decrease of kidney putrescine content; although they displayed no overt phenotype, they had fewer tubular casts upon ischemia-reperfusion injury. Hyperosmotic stress stimulated AOC1 expression at the transcriptional and post-transcription levels in metanephric explants and kidney cell lines. AOC1 expression was also significantly enhanced after kidney transplantation in humans. These data demonstrate that the kidneys respond to various forms of injury with down-regulation of polyamine synthesis and activation of the polyamine breakdown pathway. Thus, an imbalance in kidney polyamines may contribute to various etiologies of kidney injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.kint.2023.04.005 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China.
As global climate change exacerbates extreme heat events, the interplay between heat stress and blast disease resistance in rice remains poorly understood. In this study, through integrated transcriptome profiling and systematic phenotyping of mutants in several thermosensory pathways, we identified HsfA1 as a positive regulator of heat priming-enhanced blast resistance in rice. Systematic analysis of microRNA (miRNA) dynamics, bioinformatics prediction, and RNA pull-down experiments revealed that , a temperature-responsive miRNA, directly suppresses the expression of by targeting the second exon of messenger RNA (mRNA).
View Article and Find Full Text PDFHereditas
August 2025
Department of Pulmonary and Critical Care Medicine, Shidong Hospital of Yangpu District, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China.
Background: Non-small cell lung cancer (NSCLC) has high mortality, and patients show variable outcomes and drug responses. Amine oxidase copper-containing 1 (AOC1) is considered an oncogene in many types of tumors. Transcription factor AP-2 alpha (TFAP2A) can affect a variety of biological processes and play a crucial role in driving tumorigenesis and tumor development.
View Article and Find Full Text PDFLife Sci
September 2025
The First Research Department, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center of PLA, Chongqing 400042, China. Electronic address:
Aims: Diamine oxidase (DAO), a well-established biomarker for intestinal damage, histamine intolerance or tumorigenesis, has rarely been reported in immune regulation. This study aimed to identify DAO as a critical enhancer of abnormal inflammation by promoting interferon-gamma (IFN-γ) production from natural killer (NK) cells.
Main Methods: Clinical bioinformatics analyzed aoc1 (DAO-coding gene) expression in PBMCs from patients with inflammatory diseases.
J Diabetes Res
May 2025
Department of Nephrology, Blood Purification Research Centre, Ningde Hospital of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Ningde, China.
Diabetic kidney disease (DKD) is a common microvascular complication of diabetes mellitus (DM). Amino acid (AA) homeostasis has an important impact on renal hemodynamics and glomerular hyperfiltration in patients with DKD, and the metabolite level of tryptophan (TRP), an AA, has been associated with various diseases. In this study, DKD tubule- and glomerulus-related microarray datasets were collected from the GEO database, and DKD-related modular genes were identified by weighted gene coexpression network analysis (WGCNA).
View Article and Find Full Text PDFFront Plant Sci
April 2025
School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China.
Copper-containing amine oxidases (CuAOs) catalyze the terminal oxidation of polyamines (PAs), producing ammonium, an aminoaldehyde, and hydrogen peroxide (HO). Plant CuAOs are induced by stress-related hormones such as methyl-jasmonate (MeJA), abscisic acid (ABA), and salicylic acid (SA). Mammalian copper-containing amine oxidases (CAOs), encoded by four genes (AOC1-4) that catalyze the oxidation of primary amines to aldehydes, regulate various biological processes and are linked to diseases like inflammatory conditions and histamine intolerance.
View Article and Find Full Text PDF