Publications by authors named "Simon Kelterborn"

Photoorientation in motile fungal zoospores is mediated by rhodopsin guanylyl cyclases (RGCs). In certain chytrids, these photoreceptors form heterodimers consisting of a visible-light-absorbing RGC paired with neorhodopsin (NeoR), a rhodopsin distinguished by its unique spectral properties: far-red absorption and high fluorescence. Leveraging the native fluorescence of NeoR, we detected RGCs in living zoospores of the fungus Rhizoclosmatium globosum.

View Article and Find Full Text PDF

Although microalgae have only recently been recognized as part of the plant and soil microbiome, their application as biofertilizers has a tradition in sustainable crop production. Under consideration of their ability to produce the plant growth-stimulating hormone cytokinin (CK), known to also induce pathogen resistance, we have assessed the biocontrol ability of CK-producing microalgae. All pro- and eukaryotic CK-producing microalgae tested were able to enhance the tolerance of tobacco against Pseudomonas syringae pv.

View Article and Find Full Text PDF

Calredoxin (CRX) is a calcium (Ca2+)-dependent thioredoxin (TRX) in the chloroplast of Chlamydomonas (Chlamydomonas reinhardtii) with a largely unclear physiological role. We elucidated the CRX functionality by performing in-depth quantitative proteomics of wild-type cells compared with a crx insertional mutant (IMcrx), two CRISPR/Cas9 KO mutants, and CRX rescues. These analyses revealed that the chloroplast NADPH-dependent TRX reductase (NTRC) is co-regulated with CRX.

View Article and Find Full Text PDF

The polyamines spermidine and spermine and their common precursor molecule putrescine are involved in tissue injury and repair. Here, we test the hypothesis that impaired polyamine homeostasis contributes to various kidney pathologies in mice during experimental models of ischemia-reperfusion, transplantation, rhabdomyolysis, cyclosporine treatment, arterial hypertension, diabetes, unilateral ureteral obstruction, high oxalate feeding, and adenine-induced injuries. We found a remarkably similar pattern in most kidney pathologies with reduced expression of enzymes involved in polyamine synthesis together with increased expression of polyamine degrading enzymes.

View Article and Find Full Text PDF

Microbial colonization of surfaces represents the first step towards biofilm formation, which is a recurring phenomenon in nature with beneficial and detrimental implications in technological and medical settings. Consequently, there is interest in elucidating the fundamental aspects of the initial stages of biofilm formation of microorganisms on solid surfaces. While most of the research is oriented to understand bacterial surface colonization, the fundamental principles of surface colonization of motile, photosynthetic microbes remain largely unexplored so far.

View Article and Find Full Text PDF

The green unicellular alga Chlamydomonas reinhardtii with two photoreceptors called channelrhodopsins is a model organism that gave birth to a new scientific field of biomedical studies, optogenetics. Although channelrhodopsins are helping to decipher the activity of the human brain, their functionality has never been extensively studied in the organism of origin, mainly due to the difficulties connected to reverse genetic interventions. In this study, we present a CRISPR-Cas9-based technique that enables a precise in vivo exchange of single amino acids in a selected gene.

View Article and Find Full Text PDF
Article Synopsis
  • The dihydrolipoamide acetyltransferase subunit DLA2 in Chlamydomonas reinhardtii has dual roles in carbon metabolism and chloroplast gene expression, particularly in synthesizing the D1 protein of photosystem II (PSII).
  • Characterization of DLA2 revealed that the acetylation of a single lysine residue (K197) allows it to switch from functioning in the pyruvate dehydrogenase complex (cpPDC) to binding psbA mRNA, suggesting a regulatory mechanism.
  • Microscopy studies indicated that DLA2 and psbA mRNA complexes localize in the chloroplast's pyrenoid, highlighting DLA2's crucial role in D1 synthesis during
View Article and Find Full Text PDF

The primary cilium is a cellular compartment specialized for receipt of extracellular signals that is essential for development and homeostasis. Although intraciliary responses to engagement of ciliary receptors are well studied, fundamental questions remain about the mechanisms and molecules that transduce ciliary signals into responses in the cytoplasm. During fertilization in the bi-ciliated alga Chlamydomonas reinhardtii, ciliary adhesion between plus and minus gametes triggers an immediate ∼10-fold increase in cellular cAMP and consequent responses in the cytoplasm required for cell-cell fusion.

View Article and Find Full Text PDF

During gestation, the most drastic change in oxygen supply occurs with the onset of ventilation after birth. As the too early exposure of premature infants to high arterial oxygen pressure leads to characteristic diseases, we studied the adaptation of the oxygen sensing system and its targets, the hypoxia-inducible factor- (HIF-) regulated genes (HRGs) in the developing lung. We draw a detailed picture of the oxygen sensing system by integrating information from qPCR, immunoblotting, hybridization, and single-cell RNA sequencing data in and models.

View Article and Find Full Text PDF

With the establishment of the CRISPR-Cas9 molecular tool as a DNA editing system in 2012, the handling of gene editing experiments was strongly facilitated pushing reverse genetics approaches forward in many organisms. These new gene editing technologies also drastically increased the possibilities for design-driven synthetic biology. Here, we describe a protocol for gene editing in the green algae Chlamydomonas reinhardtii using preassembled CRISPR-Cas9 ribonucleoproteins.

View Article and Find Full Text PDF

The use of CRISPR/Cas endonucleases has revolutionized gene editing techniques for research on Chlamydomonas reinhardtii. To better utilize the CRISPR/Cas system, it is essential to develop a more comprehensive understanding of the DNA repair pathways involved in genome editing. In this study, we have analyzed contributions from canonical KU80/KU70-dependent nonhomologous end-joining (cNHEJ) and DNA polymerase theta (POLQ)-mediated end joining on SpCas9-mediated untemplated mutagenesis and homology-directed repair (HDR)/gene inactivation in Chlamydomonas.

View Article and Find Full Text PDF

For the unicellular alga the presence of -glycosylated proteins on the surface of two flagella is crucial for both cell-cell interaction during mating and flagellar surface adhesion. However, it is not known whether only the presence or also the composition of -glycans attached to respective proteins is important for these processes. To this end, we tested several insertional mutants and a CRISPR/Cas9 knockout mutant of xylosyltransferase 1A, all possessing altered -glycan compositions.

View Article and Find Full Text PDF

The fast-growing biflagellated single-celled chlorophyte is the most widely used alga in basic research. The physiological functions of the 18 sensory photoreceptors are of particular interest with respect to Chlamydomonas development and behavior. Despite the demonstration of gene editing in Chlamydomonas in 1995, the isolation of mutants lacking easily ascertained newly acquired phenotypes remains problematic due to low DNA recombination efficiency.

View Article and Find Full Text PDF

Background: Standardized and well-characterized genetic building blocks are a prerequisite for the convenient and reproducible assembly of novel genetic modules and devices. While numerous standardized parts exist for Escherichia coli, such tools are still missing for the Gram-positive model organism Bacillus subtilis. The goal of this study was to develop and thoroughly evaluate such a genetic toolbox.

View Article and Find Full Text PDF