98%
921
2 minutes
20
Obesity is caused by a prolonged positive energy balance. Whether reduced energy expenditure stemming from reduced activity levels contributes is debated. Here we show that in both sexes, total energy expenditure (TEE) adjusted for body composition and age declined since the late 1980s, while adjusted activity energy expenditure increased over time. We use the International Atomic Energy Agency Doubly Labelled Water database on energy expenditure of adults in the United States and Europe (n = 4,799) to explore patterns in total (TEE: n = 4,799), basal (BEE: n = 1,432) and physical activity energy expenditure (n = 1,432) over time. In males, adjusted BEE decreased significantly, but in females this did not reach significance. A larger dataset of basal metabolic rate (equivalent to BEE) measurements of 9,912 adults across 163 studies spanning 100 years replicates the decline in BEE in both sexes. We conclude that increasing obesity in the United States/Europe has probably not been fuelled by reduced physical activity leading to lowered TEE. We identify here a decline in adjusted BEE as a previously unrecognized factor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445668 | PMC |
http://dx.doi.org/10.1038/s42255-023-00782-2 | DOI Listing |
Lasers Med Sci
September 2025
Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China.
To evaluated the efficacy of photodynamic therapy (PDT) in improving laryngeal mucosal wound scar healing in vivo and investigated its underlying mechanisms. Laryngeal mucosal wounds were induced in Sprague-Dawley rats. Two weeks post-injury, PDT was administered via intraperitoneal injection of 100 mg/kg 5-aminolevulinic acid (5-ALA) and 635-nm red laser irradiation at varying energy doses (15, 30, and 45 J/cm²).
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.
Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.
View Article and Find Full Text PDFNeurochem Res
September 2025
School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
Metabolic synergy between astrocytes and neurons is key to maintaining normal brain function. As the main supporting cells in the brain, astrocytes work closely with neurons through intercellular metabolic synergy networks to jointly regulate energy metabolism, lipid metabolism, synaptic transmission, and cerebral blood flow. This important synergy is often disrupted in neurological diseases such as Alzheimer's disease, Parkinson's disease, and stroke.
View Article and Find Full Text PDFMol Biomed
September 2025
National Key Laboratory of Immunity and Inflammation & Institute of Immunology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China.
Dendritic cells (DCs) play a central role in coordinating immune responses by linking innate and adaptive immunity through their exceptional antigen-presenting capabilities. Recent studies reveal that metabolic reprogramming-especially pathways involving acetyl-coenzyme A (acetyl-CoA)-critically influences DC function in both physiological and pathological contexts. This review consolidates current knowledge on how environmental factors, tumor-derived signals, and intrinsic metabolic pathways collectively regulate DC development, subset differentiation, and functional adaptability.
View Article and Find Full Text PDFFASEB J
September 2025
Department of Surgery, McMaster University, Hamilton, Ontario, Canada.
Severe burns are a major global health concern, and are associated with long-term physical and psychological impairments, multi-organ dysfunction, and substantial morbidity and mortality. While burn injuries in adults trigger systemic immuno-metabolic alterations-characterized by white adipose tissue browning, elevated resting energy expenditure, widespread catabolism, and inflammation-these adaptive responses are considerably impaired in older adults, with molecular mechanisms behind these differences remaining largely unclear. As a key regulator of systemic metabolism, investigating the pathological role of adipose tissue (AT) postburn may reveal novel targets that could potentially improve patient outcomes.
View Article and Find Full Text PDF