98%
921
2 minutes
20
Nanocomposites are promising drug carriers to treat terminal cancers with few adverse effects. Herein, nanocomposite hydrogels composed of carboxymethyl cellulose (CMC)/starch/reduced graphene oxide (RGO) were synthesized via a green chemistry approach and then encapsulated in double nanoemulsions to act as pH-responsive delivery systems for curcumin, a potential antitumor drug. A water/oil/water nanoemulsion containing bitter almond oil served as a membrane surrounding the nanocarrier to control drug release. DLS and zeta potential measurements were used to estimate the size and confirm the stability of curcumin-loaded nanocarriers. The intermolecular interactions, crystalline structure and morphology of the nanocarriers were analyzed through FTIR spectroscopy, XRD and FESEM, respectively. The drug loading and entrapment efficiencies were significantly improved compared to previously reported curcumin delivery systems. In vitro release experiments demonstrated the pH-responsiveness of the nanocarriers and the faster curcumin release at a lower pH. The MTT assay revealed the increased toxicity of the nanocomposites against MCF-7 cancer cells compared to CMC, CMC/RGO or free curcumin. Apoptosis was detected in MCF-7 cells via flow cytometry tests. The results obtained herein support that the developed nanocarriers are stable, uniform and effective delivery systems for a sustained and pH-sensitive curcumin release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.124566 | DOI Listing |
Biologics
September 2025
Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Beijing, People's Republic of China.
Osteoarthritis (OA) is a prevalent chronic disease, characterized by progressive joint degeneration and primarily affects older adults. OA leads to reduced functional abilities, a lower quality of life, and an increased mortality rate. Currently, effective treatment options for OA are lacking.
View Article and Find Full Text PDFInt J Pharm X
June 2025
Medical School, Southeast University, Nanjing 210009, China.
This study aimed to create multifunctional nanoparticles (NPs), specifically AS1411@MPDA-Len-Cy5.5 (AMLC), for the purpose of developing effective strategies for treating hepatocellular carcinoma (HCC) through targeted therapy and photothermal therapy (PTT). The study involved synthesizing mesoporous polydopamine (MPDA)-NPs, loading lenvatinib (Len) and Cy5.
View Article and Find Full Text PDFInt J Pharm X
June 2025
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
Ultra-sensitive pH-responsive drug delivery system designed to operate within the slightly acidic microenvironment of tumors are highly desired for hydrogel applications in cancer therapy. In this study, 4-Formylbenzoic acid modified polyvinyl alcohol (PVA-FBA, PF) was synthesized and utilized as a carrier for encapsulating the anticancer drug Doxorubicin (Dox). This was subsequently crosslinked with polyethylenimine (PEI) via benzoic-imine bond to form drug-loaded PVA-FBA/PEI hydrogel (D-PFP).
View Article and Find Full Text PDFBackground: Transforming Clinical Practice Guideline (CPG) recommendations into computer readable language is a complex and ongoing process that requires significant resources, including time, expertise, and funds. The objective is to provide an extension of the widely used GIN-McMaster Guideline Development Checklist (GDC) and Tool for the development of computable guidelines (CGs).
Methods: Based on an outcome from the Human Centered Design (HCD) workshop hosted by the Guidelines International Network North America (GIN-NA), a team was formed to develop the checklist extension.
iScience
September 2025
Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Biomaterials for Oral Disease, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China.
This study highlights the biomedical relevance of injectable TS (tannic acid-silk fibroin)-Mg/Sr hydrogels in alveolar bone repair, particularly their prospective role as carriers for stem cells from the apical papilla (SCAPs) in tissue regeneration. By utilizing self-assembling silk material, noted for its favorable handling properties, we present a useful approach for single-wall bone defects, such as bone fenestration and fractures in the oral cavity. Furthermore, our findings regarding the involvement of the TRPM7 ion channel indicate a possible regulatory pathway for improving alveolar bone defect repair.
View Article and Find Full Text PDF