98%
921
2 minutes
20
Purpose: Age is the main risk factor for age-related macular degeneration (AMD), a leading cause of blindness in the elderly, with limited therapeutic options.
Methods: Here, we analyze the transcriptomic characteristics and cellular landscape of the aging retinas from controls and patients with AMD.
Results: We identify the aging genes in the neural retina, which are associated with innate immune response and inflammation. Deconvolution analysis reveals that the estimated proportions of M2 macrophages are significantly increased with both age and AMD severity. Moreover, we find that proportions of Müller glia are significantly increased only with age but not with AMD severity. Several genes associated with both age and AMD severity, particularly C1s and MR1, are strong positively correlated with the proportions of Müller glia.
Conclusions: Our studies expand the genetic and cellular landscape of AMD and provide avenues for further studies on the relationship between age and AMD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148661 | PMC |
http://dx.doi.org/10.1167/iovs.64.4.32 | DOI Listing |
Exp Eye Res
September 2025
School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China; Department of Ophthalmology, Qingdao Eighth People's Hospital, Qingdao, Shandong Province, 266121, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shan
Mitochondria play a crucial role in energy production and are intimately associated with ocular function. Mitochondrial dysfunction can trigger oxidative stress and inflammation, adversely affecting key ocular structures such as the lacrimal gland, lens, retina, and trabecular meshwork. This dysfunction may compromise the barrier properties of the trabecular meshwork, impeding aqueous humour outflow, elevating intraocular pressure, and resulting in optic nerve damage and primary open-angle glaucoma.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2025
Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.
Purpose: To explore the causal links between antihypertension drugs usage and age-related macular degeneration (AMD).
Methods: Multiple genetic analyses, including summary data-based Mendelian randomization (SMR), traditional MR, and colocalization analysis, were used to explore the causal associations between antihypertension drugs and AMD. Clinical data from the UK Biobank and the National Health and Nutrition Examination Survey (NHANES) was applied to refined risk assessment of specific antihypertensive medications in the context of AMD development.
Retin Cases Brief Rep
October 2024
Eye Clinic, Humanitas-Gradenigo Hospital, Torino, Italy.
Purpose: To study the efficacy and safety of pro re nata regimen of brolucizumab, without loading dose, in treatment-naive patients with neovascular age-related macular degeneration (nAMD).
Case Series: Retrospective, observational study. We included all consecutive patients diagnosed with treatment- naïve nAMD undergoing Brolucizumab in Humanitas eye clinic, Turin, Italy between April 2022 and May 2023.
Clin Ther
September 2025
F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Center for Pharmacoepidemiology Research and Training, University of Pennsylvania Perelman School of Medicine, Philade
Purpose: Cholelithiasis is associated with decreased risk of age-related macular degeneration (AMD). Ursodeoxycholic acid (UDCA), a bile acid used to dissolve cholesterol gallstones, has been shown to be retina-protective in several mouse models. This study sought to determine if UDCA may protect against AMD.
View Article and Find Full Text PDFRetina
September 2025
Retina Division, Stein Eye Institute, University of California of Los Angeles, Los Angeles, California.
Purpose: To describe the clinical and multimodal imaging features of a novel form of macular neovascularization (MNV), designated Type 4 MNV, defined by mixed Type 1 and Type 2 neovascularization (NV), extensive intraretinal anastomotic NV, and central posterior hyaloid fibrosis (CPHF).
Methods: This multicenter retrospective observational case series included patients with neovascular age-related macular degeneration (AMD) exhibiting both Type 1 and 2 MNV and an overlying anastomotic intraretinal NV network. This was confirmed with OCT and OCT angiography (OCTA).