Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Triethylamine (TEA) is an effective medium for inhibiting dye aggregation and improving the luminescence of dye-sensitized lanthanide-doped upconversion nanoparticles (UCNPs). However, excessive TEA will cause quenching of upconversion luminescence. In this paper, the possible mechanism of TEA affecting upconversion luminescence is discussed. It is found that TEA can enhance the nucleophilicity of the solvent, leading to dye shedding from the nanoparticles. Reducing the dielectric constant of the solvent can make TEA play a more positive role in upconversion luminescence and photostability of dye-sensitized UCNPs. When heptanol is selected as the solvent for CyBSO-sensitized β-NaYF:20%Yb,2%Er (UNs), TEA can increase the upconversion luminescence by 6.0 times relative to that in methanol. More importantly, the optimal content of TEA in heptanol is 3700 times more than that in methanol. Under the action of large amounts of TEA in heptanol, a novel upconversion nanoprobe for detecting ascorbic acid is developed with a limit of detection of 0.103 μM and high selectivity over potential interfering species. Meanwhile, the high concentration of TEA in heptanol can improve the photostability of CyBSO-sensitized UNs by 10.4 times, which is of paramount importance for the practical application of dye-sensitized UCNPs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp01127eDOI Listing

Publication Analysis

Top Keywords

upconversion luminescence
20
tea heptanol
12
tea
9
dye-sensitized ucnps
8
upconversion
7
luminescence
6
triethylamine dye-sensitized
4
dye-sensitized upconversion
4
luminescence application
4
application nanoprobes
4

Similar Publications

The synergistic effect of various ions with optical properties is an important method to regulate the Er ion upconversion luminescence process. However, the energy processes between them are complicated and difficult to separate, and it is challenging to clarify the results of each process when multiple ions are co-doped. Herein, a series of NaYF:Er were synthesized by the low-temperature combustion method, and the luminescence color of Er ions was modulated by doping Yb ions and Tm ions.

View Article and Find Full Text PDF

Upconverting nano-paste in 3D-printed phone camera setup for soil phyto-iron sensing.

Anal Chim Acta

November 2025

Institute of Nano Science and Technology, Knowledge City, Sahibzada Ajit Singh Nagar, Sector- 81, Punjab, 140306, India. Electronic address:

Background: Iron (Fe) is an essential micronutrient for plant growth, but the conventional DTPA soil analysis method for detecting available iron has notable limitations, requiring advanced instruments and lengthy preparation time. Developing a more affordable, user-friendly, and efficient method for iron detection in soil could greatly improve crop nutrition management. Here, a facile nanoscopic method was developed to quantify available Fe ions in the soil by forming a luminescence quenching complex in chelation with bathophenanthroline disulphonic acid disodium salt (Fe/BPDS complex).

View Article and Find Full Text PDF

Rare-earth ions (REIs), especially trivalent lanthanides (Ln ), are central to photonic technologies due to sharp intra-4f transitions, long lifetimes, and host-insensitive emission. However, modeling REIs remains challenging due to localized 4f orbitals, strong electron correlation, and multiplet structures. This review summarizes atomistic modeling strategies combining quantum chemistry and machine learning (ML).

View Article and Find Full Text PDF

Despite the various advantages of upconversion nanoparticles (UCNPs), the paradoxes of high luminescence resonance energy transfer (LRET) efficiency and low quantum yield remain a bottleneck for broader sensing applications. Herein, novel sandwich-structured UCNPs (SWUCNPs, NaYbF:(30%Gd)@NaYbF:Er(2%)@NaYF) with a core-middle shell-outer shell structure were synthesized. The SWUCNPs maintained a high LRET efficiency by confining the luminescent center of Er in the middle shell.

View Article and Find Full Text PDF

Developing a sensitive analysis of dufulin with high anti-interference performance remains challenging. Herein, a metal-organic framework (MOF)-encapsulated upconversion nanoparticle (UC) core-shell hybrid sensor (UC@CuMOF) was designed for the sensitive detection of dufulin. With the encapsulation of the CuMOF shell, the luminescence of UC under a 980 nm laser was strongly quenched by the shell through the photoinduced electron transfer effect.

View Article and Find Full Text PDF