Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacep.2023.02.023DOI Listing

Publication Analysis

Top Keywords

3-dimensional printing
4
printing planning
4
planning transvenous
4
transvenous pacemaker
4
pacemaker placement
4
placement complex
4
complex congenital
4
congenital heart
4
heart disease
4
3-dimensional
1

Similar Publications

Three-dimensional printing (3DP) technology enables the flexible fabrication of integrated monolithic microextraction chips for high-throughput sample pretreatment. Meanwhile, the extraction performance of 3DP-based channels is largely limited by printer resolution and the commercially available printing materials. In this work, a 3DP array monolithic microextraction chip (AMC) was fabricated by integrating 26-array helical monolithic microextraction channels for sample pretreatment and 52-array gas valves for fluid control.

View Article and Find Full Text PDF

Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.

View Article and Find Full Text PDF

Urinary catheters: state of the art and future perspectives - a narrative review.

Mater Today Bio

October 2025

University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska Ulica 8, SI-2000, Maribor, Slovenia.

Catheter associated urinary tract infection (CAUTI) is the most frequent healthcare associated infection, arising from microbial adhesion to catheter surfaces, biofilm development, and the growing problem of antimicrobial resistance. Many publications have addressed CAUTI epidemiology, biofilm biology, or biomaterials for catheters in isolation, yet there is little literature that connects these areas into a coherent translational perspective. This review seeks to fill that gap by combining an overview of biofilm pathophysiology with recent advances in material based innovations for catheter design, including nanostructured and responsive coatings, sensor enabled systems, additive manufacturing, and three dimensional printing.

View Article and Find Full Text PDF

Introduction: anatomical deformities such as developmental dysplasia of the hip (DDH) and Perthes disease represent a challenge for reconstruction. The use of 3D-printed models can be helpful for assessing the deformity, bone mass, implant size, and orientation.

Objectives: to prospectively evaluate the outcomes of 3D simulation in primary total hip arthroplasty.

View Article and Find Full Text PDF

On-site mercury analyser employing enclosed quartz cell cold vapour atomic absorption spectrometry and 3D printing techniques.

Talanta

September 2025

Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi City, Kochi, 780-8520, Japan. Electronic address:

The development of on-site Hg analysers is crucial for the rapid evaluation of Hg concentrations in environmental research. However, the fabrication of Hg analysers requires simplification of analytical procedures and device miniaturisation. Based on the above requirements, our research group previously investigated enclosed quartz cell cold vapour atomic absorption spectrometry (EQC-CV-AAS) as a base technique for an on-site Hg analyser.

View Article and Find Full Text PDF