98%
921
2 minutes
20
Background: Driver alterations may represent novel candidates for driver gene-guided therapy; however, intrahepatic cholangiocarcinoma (ICC) with multiple genomic aberrations makes them intractable. Therefore, the pathogenesis and metabolic changes of ICC need to be understood to develop new treatment strategies. We aimed to unravel the evolution of ICC and identify ICC-specific metabolic characteristics to investigate the metabolic pathway associated with ICC development using multiregional sampling to encompass the intra- and inter-tumoral heterogeneity.
Methods: We performed the genomic, transcriptomic, proteomic and metabolomic analysis of 39-77 ICC tumour samples and eleven normal samples. Further, we analysed their cell proliferation and viability.
Results: We demonstrated that intra-tumoral heterogeneity of ICCs with distinct driver genes per case exhibited neutral evolution, regardless of their tumour stage. Upregulation of BCAT1 and BCAT2 indicated the involvement of 'Val Leu Ile degradation pathway'. ICCs exhibit the accumulation of ubiquitous metabolites, such as branched-chain amino acids including valine, leucine, and isoleucine, to negatively affect cancer prognosis. We revealed that this metabolic pathway was almost ubiquitously altered in all cases with genomic diversity and might play important roles in tumour progression and overall survival.
Conclusions: We propose a novel ICC onco-metabolic pathway that could enable the development of new therapeutic interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241955 | PMC |
http://dx.doi.org/10.1038/s41416-023-02256-4 | DOI Listing |
Zhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
Objectives: Bladder cancer is a common malignancy with high incidence and poor prognosis. N-methyladenosine (mA) modification is widely involved in diverse physiological processes, among which the mA recognition protein YTH N-methyladenosine RNA binding protein F2 (YTHDF2) plays a crucial role in bladder cancer progression. This study aims to elucidate the molecular mechanism by which O-linked -acetylglucosamine (O-GlcNAc) modification of YTHDF2 regulates its downstream target, period circadian regulator 1 (), thereby promoting bladder cancer cell proliferation.
View Article and Find Full Text PDFMol Ecol
September 2025
Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, USA.
Many North American game animals experienced severe population declines during the 19th century due to market hunting. However, estimates of the timing and magnitude of these declines often rely on anecdotal evidence, which makes it difficult to understand the lasting impacts of hunting pressures versus climate or landscape changes on the genetic diversity of contemporary populations. Historical reports suggest the California quail (Callipepla californica) suffered more significant hunting pressure in the late 19th century relative to either Gambel's (Callipepla gambelii) or mountain quail (Oreortyx pictus).
View Article and Find Full Text PDFMol Ecol
September 2025
Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.
Determining species boundaries is key for appropriately assessing biodiversity. However, the continuity of the speciation process makes delimiting species a difficult task, especially for recently diverged taxa. Furthermore, past introgression may leave traces that result in reticulate evolutionary patterns, challenging the estimation of species relationships.
View Article and Find Full Text PDFDNA Res
September 2025
Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
Sauvagesia rhodoleuca is an endangered species endemic to southern China. Due to human activities, only six fragmented populations remain in Guangdong and Guangxi. Despite considerable conservation efforts, its demographic history and evolution remain poorly understood, particularly from a genomic perspective.
View Article and Find Full Text PDFBiotechnol Appl Biochem
September 2025
Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Türkiye.
Natural seepage, anthropogenic activities and accidents affect the ecosystem by increasing hydrocarbon footprints in the environment and cause a disruption in the biogeochemical balance. In addition, these imbalances result in human diseases and a decrease in the diversity of animals and microorganisms. Microbial bioremediation is the only sustainable option for the cleanup of hydrocarbon-impacted wastes, and the genus Alcanivorax is famous for its extraordinary ability to degrade hydrocarbons.
View Article and Find Full Text PDF