Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Dicarbonyls are reactive precursors of advanced glycation end-products (AGEs). Dicarbonyls are formed endogenously, but also during food processing. Circulating dicarbonyls are positively associated with insulin resistance and type 2 diabetes, but the consequences of dietary dicarbonyls are unknown.

Objectives: We aimed to examine the associations of dietary intake of dicarbonyls with insulin sensitivity, β-cell function, and the prevalence of prediabetes or type 2 diabetes.

Methods: In 6282 participants (aged 60 ± 9 y; 50% men, 23% type 2 diabetes [oversampled]) of the population-based cohort the Maastricht Study, we estimated the habitual intake of the dicarbonyls methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG) using food frequency questionnaires. Insulin sensitivity (n = 2390), β-cell function (n = 2336), and glucose metabolism status (n = 6282) were measured by a 7-point oral glucose tolerance test. Insulin sensitivity was assessed as the Matsuda index. Additionally, insulin sensitivity was measured as HOMA2-IR (n = 2611). β-cell function was assessed as the C-peptidogenic index, overall insulin secretion, glucose sensitivity, potentiation factor, and rate sensitivity. Cross-sectional associations of dietary dicarbonyls with these outcomes were investigated using linear or logistic regression adjusting for age, sex, cardiometabolic risk factors, lifestyle, and dietary factors.

Results: Higher dietary MGO and 3-DG intakes were associated with greater insulin sensitivity after full adjustment, indicated by both a higher Matsuda index (MGO: Std. β [95% CI] = 0.08 [0.04, 0.12]; 3-DG: 0.09 [0.05, 0.13]) and a lower HOMA2-IR (MGO: Std. β = -0.05 [-0.09, -0.01]; 3-DG: -0.04 [-0.08, -0.01]). Moreover, higher MGO and 3-DG intakes were associated with a lower prevalence of newly diagnosed type 2 diabetes (OR [95% CI] = 0.78 [0.65, 0.93] and 0.81 [0.66, 0.99]). There were no consistent associations of MGO, GO, and 3-DG intakes with β-cell function.

Conclusion: Higher habitual consumption of the dicarbonyls MGO and 3-DG was associated with better insulin sensitivity and lower prevalence of type 2 diabetes, after excluding individuals with known diabetes. These novel observations warrant further exploration in prospective cohorts and intervention studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajcnut.2023.04.011DOI Listing

Publication Analysis

Top Keywords

insulin sensitivity
28
type diabetes
20
mgo 3-dg
16
dietary dicarbonyls
12
lower prevalence
12
β-cell function
12
3-dg intakes
12
dicarbonyls
9
insulin
9
sensitivity
9

Similar Publications

Connecting the Dots: Hepatic Steatosis as a Central Player in the Choreography of the Liver-Cardiovascular-Kidney-Metabolic Syndrome.

Heart Lung Circ

September 2025

Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA, Australia; Medical School, The University of Western Australia, Perth, WA, Australia; Curtin Medical School, Curtin University, Bentley, WA, Australia. Electronic address:

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, with a reach extending beyond the liver to include other metabolic syndrome-related disorders. Cardiovascular disease and type 2 diabetes mellitus are recognised non-communicable disorders and often downstream complications of MASLD and share similar risk factors. However, MASLD has not been afforded parity alongside other cardiometabolic non-communicable disorders, including the cardiovascular-kidney-metabolic (CKM) syndrome.

View Article and Find Full Text PDF

A protocol for measuring phenotypical facial disease markers in a mouse model of iatrogenic Cushing's syndrome.

Methods Cell Biol

September 2025

Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France. Electronic ad

Cushing's syndrome is caused by chronic exposure to excessive levels of glucocorticoids. It is characterized by significant phenotypic alterations including increased visceral adiposity and fat deposits on the cheeks, leading to a characteristic 'moon face' appearance. Although glucocorticoid therapy is widespread, its associated side effects are of significant clinical concern.

View Article and Find Full Text PDF

Targeting the IRS1 macromolecular signaling node by Trienomycin a triggers cytoprotective autophagy in pancreatic adenocarcinoma.

Int J Biol Macromol

September 2025

Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Xianyang, China. Electronic address:

Pancreatic adenocarcinoma (PAAD) lacks effective therapies due to complex macromolecular signaling networks. Here, we identified the natural compound Trienomycin A (TA) as a potent binder and degrader of the key signaling adaptor protein Insulin Receptor Substrate 1 (IRS1), disrupting its macromolecular assembly in insulin-like growth pathways. Through integrated biochemical, cellular, and in vivo analyses, we demonstrated that TA directly bound the phosphotyrosine-binding (PTB) domain of IRS1, inducing proteasomal degradation of this critical macromolecular hub mediated by the E3 ubiquitin ligase FBXW8.

View Article and Find Full Text PDF

Loss of hepatic ME1 ameliorates MASLD by Suppressing peroxisomal β-Oxidation and Activating Lipophagy/Lipolysis.

J Adv Res

September 2025

School of Public Health and Nursing, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, China. Electronic address:

Introduction: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents an increasing global health problem in association with obesity and insulin resistance without approved pharmacotherapy. Previous studies revealed malic enzyme 1 (ME1) as a susceptibility gene for metabolic disorders in humans. However, the role and mechanisms of ME1 in regulating hepatic lipid metabolism remain largely unclear.

View Article and Find Full Text PDF

The non-insulin-based metabolic score for insulin resistance (METS-IR) is a recently developed index aimed at being a practical and efficient alternative biomarker of insulin resistance (IR). This study aimed to investigate the association between METS-IR in euthyroid women in the first trimester of pregnancy and pregnancy outcomes. A total of 1810 participants who gave birth at Fujian Maternity and Child Health Hospital from November 2018 to November 2019 were included in this study.

View Article and Find Full Text PDF