Impact of Red Sea Bream Iridovirus Infection on Rock Bream () and Other Fish Species: A Study of Horizontal Transmission.

Animals (Basel)

Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Republic of Korea.

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Red sea bream iridovirus (RSIV) causes significant economic losses in aquaculture. Here, we analyzed the pathogenicity, viral shedding, and transmission dynamics of RSIV in rock bream () by employing immersion infection and cohabitation challenge models. Rock bream challenged by immersion exposure exhibited 100% mortality within 35 days post RSIV exposure, indicating that the viral shedding in seawater peaked after mortality. At 25 °C, a positive correlation between the viral loads within infected rock bream and virus shedding into the seawater was observed. Specific RSIV lesions were observed in the spleen and kidney of the infected rock bream, and the viral load in the spleen had the highest correlation with the histopathological grade. A cohabitation challenge mimicking the natural transmission conditions was performed to assess the virus transmission and determine the pathogenicity and viral load. The RSIV-infected rock breams (donors) were cohabited with uninfected rock bream, red sea bream (), and flathead grey mullet () (recipients) at both 25 °C and 15 °C. In the cohabitation challenge group maintained at 15 °C, no mortality was observed across all experimental groups. However, RSIV was detected in both seawater and the recipient fish. Our results provide preliminary data for further epidemiological analyses and aid in the development of preventive measures and management of RSIVD in aquaculture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10093424PMC
http://dx.doi.org/10.3390/ani13071210DOI Listing

Publication Analysis

Top Keywords

rock bream
24
red sea
12
sea bream
12
cohabitation challenge
12
bream
9
bream iridovirus
8
pathogenicity viral
8
viral shedding
8
shedding seawater
8
infected rock
8

Similar Publications

TNFRSF6B, commonly referred to as decoy receptor 3, interacts with TNFSF6, TNFSF14, and TNFSF15, thereby imparting anti-apoptotic and anti-inflammatory properties. This study identifies two isoforms, TNFRSF6B.1 and TNFRSF6B.

View Article and Find Full Text PDF

In this study, heavy chain genes of IgD and IgT were sequenced and characterized their gene expression in rock bream (Oplegnathus fasciatus). Rock bream (RB)-IgD cDNA is 3319 bp in length and encodes a leader region, variable domains, a μ1 domain, and seven constant domains (CH1-CH7). A membrane-bound (mIgT) and secretory form (sIgT) of RB-IgT cDNAs are 1902 bp and 1689 bp in length, respectively, and encode a leader region, variable domains, four constant domains (CH1-CH4) and C-terminus.

View Article and Find Full Text PDF

Rock bream (Oplegnathus fasciatus) is one of the highly priced cultured marine fish in Korea. Rock bream iridovirus (RBIV) outbreaks in aquaculture farms may involve environmental factors, co-infection with other pathogenic microorganisms and grounded (raw) fish feed. This study evaluated the effects of RBIV-containing tissue intake on mortality and oral transmission in rock bream.

View Article and Find Full Text PDF

Red seabream iridovirus (RSIV) is a major cause of marine fish mortality in Korea, with no effective vaccine available since its first occurrence in the 1990s. This study evaluated the efficacy of a formalin-killed vaccine against RSIV in rock bream under laboratory and field conditions. For the field trial, a total of 103,200 rock bream from two commercial marine cage-cultured farms in Southern Korea were vaccinated.

View Article and Find Full Text PDF

LEAP2 (liver expression antimicrobial peptide 2), is an antimicrobial peptide widely found in vertebrates and mainly expressed in liver. LEAP2 plays a vital role in host innate immunity. In teleosts, a number of LEAP2 homologs have been reported, but their in vivo effects on host defense are still limited.

View Article and Find Full Text PDF