98%
921
2 minutes
20
Nanomotors in nature have inspired scientists to design synthetic molecular motors to drive the motion of microscale objects by cooperative action. Light-driven molecular motors have been synthesized, but using their cooperative reorganization to control the collective transport of colloids and to realize the reconfiguration of colloidal assembly remains a challenge. In this work, topological vortices are imprinted in the monolayers of azobenzene molecules which further interface with nematic liquid crystals (LCs). The light-driven cooperative reorientations of the azobenzene molecules induce the collective motion of LC molecules and thus the spatiotemporal evolutions of the nematic disclination networks which are defined by the controlled patterns of vortices. Continuum simulations provide physical insight into the morphology change of the disclination networks. When microcolloids are dispersed in the LC medium, the colloidal assembly is not only transported and reconfigured by the collective change of the disclination lines but also controlled by the elastic energy landscape defined by the predesigned orientational patterns. The collective transport and reconfiguration of colloidal assemblies can also be programmed by manipulating the irradiated polarization. This work opens opportunities to design programmable colloidal machines and smart composite materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10119998 | PMC |
http://dx.doi.org/10.1073/pnas.2221718120 | DOI Listing |
Biosystems
September 2025
Department of Physics, Lancaster University, Lancaster LA1 4YB, UK. Electronic address:
Swirling motion is an essential phenomenon that significantly influences numerous biological processes, such as the mixing of molecular components within living cells, nutrient transport, the structural changes of the cytoskeletons of contractile cells and the rearrangement of multicellular systems caused by collective cell migration. The dynamical relationship between subcellular and supracellular rearrangements enhances cell migration and contributes to tissue homeostasis. However, the basic mechanisms that drive swirling motion in biological contexts remain a matter of ongoing inquiry.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemistry Education and Graduate Department of Chemical Materials, Pusan National University, Busan 46241, Republic of Korea.
Alkali salt-doped ionic liquids are emerging as promising electrolyte systems for energy applications, owing to their excellent interfacial stability. To address their limited ionic conductivity, various strategies have been proposed, including modifying the ion solvation environment and enhancing the transport of selected ions (e.g.
View Article and Find Full Text PDFbioRxiv
August 2025
Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Understanding conformational dynamics is essential for elucidating protein function, yet most deep learning models in structural biology predict only static structures. Here, we introduce ESMDynamic, a deep learning model that predicts dynamic residue-residue contact probability maps directly from protein sequence. Built on the ESMFold architecture, ESMDynamic is trained on contact fluctuations from experimental structure ensembles and molecular dynamics (MD) simulations, enabling it to capture diverse modes of structural variability without requiring multiple sequence alignments.
View Article and Find Full Text PDFBMC Pregnancy Childbirth
August 2025
Department of Pediatrics, Yale University School of Medicine, Yale University, New Haven, CT, USA.
Background: Timely and accessible prenatal and postpartum healthcare supports the health and well-being of the mother-infant dyad, enabling detection and prevention of pregnancy-related complications and chronic conditions. In the U.S.
View Article and Find Full Text PDFSensors (Basel)
August 2025
Department of Systems Engineering and Computation, State University of Rio de Janeiro, Rua são Francisco Xavier 524, Rio de Janeiro 20000-000, Brazil.
In swarm robotics, collective transport refers to the cooperative movement of a large object by multiple small robots, each with limited individual capabilities such as sensing, mobility, and communication. When working together, however, these simple agents can achieve complex tasks. This study explores a collective transport method based on the caging approach, which involves surrounding the object in a way that restricts its movement while still allowing limited motion, effectively preventing escape from the robot formation.
View Article and Find Full Text PDF