Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ongoing climate change has caused rapidly increasing temperatures and an unprecedented decline in seawater pH, known as ocean acidification. Increasing temperatures are redistributing species toward higher and cooler latitudes that are most affected by ocean acidification. While the persistence of intertidal species in cold environments is related to their capacity to resist sub-zero air temperatures, studies have never considered the interacting impacts of ocean acidification and freeze stress on species survival and distribution. Here, a full-factorial experiment was used to study whether ocean acidification increases mortality in subtidal and subtidal . , and intertidal following sub-zero air temperature exposure. We examined physiological processes behind variation in freeze tolerance using H NMR metabolomics, analyses of fatty acids, and amino acid composition. We show that low pH conditions (pH = 7.5) significantly decrease freeze tolerance in both intertidal and subtidal populations of spp. Under current day pH conditions (pH = 7.9), intertidal was more freeze tolerant than subtidal and subtidal . Conversely, under low pH conditions, subtidal was more freeze tolerant than the other mussel categories. Differences in the concentration of various metabolites (cryoprotectants) or in the composition of amino acids and fatty acids could not explain the decrease in survival. These results suggest that ocean acidification can offset the poleward range expansions facilitated by warming and that reduced freeze tolerance could result in a range contraction if temperatures become lethal at the equatorward edge.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10129327PMC
http://dx.doi.org/10.7554/eLife.81080DOI Listing

Publication Analysis

Top Keywords

ocean acidification
24
sub-zero air
12
freeze tolerance
12
acidification increases
8
air temperatures
8
poleward range
8
increasing temperatures
8
subtidal subtidal
8
fatty acids
8
low conditions
8

Similar Publications

The rapid emergence of mineralized structures in diverse animal groups during the late Ediacaran and early Cambrian periods likely resulted from modifications of pre-adapted biomineralization genes inherited from a common ancestor. As the oldest extant phylum with mineralized structures, sponges are key to understanding animal biomineralization. Yet, the biomineralization process in sponges, particularly in forming spicules, is not well understood.

View Article and Find Full Text PDF

Ocean acidification (OA) due to anthropogenic CO2 emissions has significantly altered ocean chemistry since the industrial era. Ocean alkalinity enhancement (OAE) is an innovative strategy to mitigate excess CO, with ocean liming (OL) serving as a potential carbon dioxide removal (CDR) method, through the spreading of Ca(OH) (slaked lime) at the ocean surface. This study examined the ecological effects of OL on a natural zooplankton community from the ultraoligotrophic Eastern Mediterranean Sea during a 14-day mesocosm experiment conducted in spring-summer.

View Article and Find Full Text PDF

Oyster farming acts as a marine carbon dioxide removal (mCDR) hotspot for climate change mitigation.

Proc Natl Acad Sci U S A

September 2025

Key Laboratory of Mariculture of Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China.

Bivalve farming, a vital component of global aquaculture, has been proposed as a potential marine carbon dioxide removal (mCDR) strategy, yet its role remains contentious. Using field mesocosms, we demonstrate that oyster filter-feeding enhances mCDR by accelerating the formation of particulate and dissolved organic carbon in the water column and promoting organic carbon deposition in sediments. This process shifts the water column toward a more autotrophic and alkaline state, effectively sequestering CO from the atmosphere.

View Article and Find Full Text PDF

Multidecadal decoupling between coral calcifying fluid and seawater saturation states.

Sci Adv

August 2025

Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA 70118, USA.

Ocean acidification poses a threat to coral skeleton formation via reductions in the saturation state of aragonite (Ω) in seawater. Given that corals precipitate their skeletons from a calcifying fluid supplied by seawater, reductions in seawater Ω should, in theory, confound calcification. Here, we reconstruct up to 200 years of coral calcifying fluid Ω, using Raman spectroscopy techniques, at approximately monthly resolution in two sp.

View Article and Find Full Text PDF

The influence of cross-generational warming on the juvenile development of a coral reef fish under ocean warming and acidification.

Mar Environ Res

October 2025

ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia; College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.

Marine ecosystems are facing escalating chronic and acute environmental stressors, yet our understanding of how multiple stressors influence individuals is limited. Here, we investigated how projected ocean warming (+1.5 °C) during grandparental (F) and parental (F) generations of the spiny chromis damselfish (Acanthochromis polyacanthus), influences the sensitivity of F juveniles to ocean warming (present-day vs +1.

View Article and Find Full Text PDF