98%
921
2 minutes
20
The recent transition to H-based energy storage demands reliable H sensors that allow for easy, fast, and reliable detection of leaks. Conventional H detectors are based on the changes of physical properties of H probes induced by subsurface H-atoms to a material such as electrical conductivity. Herein, we report on highly reactive gasochromic H detectors based on the adsorption of H on the material surface. We prepared supraparticles (SPs) containing different types of noble metal nanoparticles (NPs), silica NPs, and the dye resazurin by spray-drying and tested their performance for H detection. The material undergoes a distinct color change due to the hydrogenation of the purple resazurin to pink resorufin and, finally, colorless hydroresorufin. The stepwise transition is fast and visible to the naked eye. To further improve the performance of the sensor, we tested the reactivity of SPs with different catalytically active NPs by means of in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). We show that the choice of the NP catalyst has a pronounced effect on the response of the H indicator. In addition, we demonstrate that the performance depends on the size of the NPs. These effects are attributed to the availability of reactive H-atoms on the NP surface. Among the materials studied, Pt-containing SPs gave the best results for H detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0135130 | DOI Listing |
Comput Methods Programs Biomed
September 2025
Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, 210096, China; Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, Southeast University, Nanjing, 210096, China. Electronic address: xuji@s
Background: Photon counting computed tomography (PCCT) has emerged as a potential technology that is revolutionizing clinical CT imaging. Using photon counting detectors (PCDs), the PCCT counts each X-ray event and measures the corresponding energy above the noise floor with significantly higher spatial resolution. However, the multiple-energy-bin setting and much smaller pixels increase the raw data size of PCCT by 20-100 times compared to traditional CT.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
University of Zürich, Department of Physics, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
We present the first results from the Quantum Resolution-Optimized Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE). The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption, and is sensitive to energy deposits as low as 0.11 eV.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China.
A highly sensitive, self-powered position-sensitive detector (PSD) based on a PEDOT:PSS/Si heterojunction is prepared. Band structure optimization via FS-300 additive doping significantly enhances the built-in electric field, achieving a maximum open-circuit voltage of 0.45 V (0.
View Article and Find Full Text PDFNeurotrauma Rep
August 2025
Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).
View Article and Find Full Text PDFMed Phys
September 2025
Department of Radiology, Stony Brook University, New York, USA.
Background: In contrast-enhanced digital mammography (CEDM) and contrast-enhanced digital breast tomosynthesis (CEDBT), low-energy (LE) and high-energy (HE) images are acquired after injection of iodine contrast agent. Weighted subtraction is then applied to generate dual-energy (DE) images, where normal breast tissues are suppressed, leaving iodinated objects enhanced. Currently, clinical systems employ a dual-shot (DS) method, where LE and HE images are acquired with two separate exposures.
View Article and Find Full Text PDF