98%
921
2 minutes
20
Plants play a crucial role in supplying food globally. Various environmental factors lead to plant diseases which results in significant production losses. However, manual detection of plant diseases is a time-consuming and error-prone process. It can be an unreliable method of identifying and preventing the spread of plant diseases. Adopting advanced technologies such as Machine Learning (ML) and Deep Learning (DL) can help to overcome these challenges by enabling early identification of plant diseases. In this paper, the recent advancements in the use of ML and DL techniques for the identification of plant diseases are explored. The research focuses on publications between 2015 and 2022, and the experiments discussed in this study demonstrate the effectiveness of using these techniques in improving the accuracy and efficiency of plant disease detection. This study also addresses the challenges and limitations associated with using ML and DL for plant disease identification, such as issues with data availability, imaging quality, and the differentiation between healthy and diseased plants. The research provides valuable insights for plant disease detection researchers, practitioners, and industry professionals by offering solutions to these challenges and limitations, providing a comprehensive understanding of the current state of research in this field, highlighting the benefits and limitations of these methods, and proposing potential solutions to overcome the challenges of their implementation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070872 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1158933 | DOI Listing |
Sci China Life Sci
September 2025
MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
Tomato brown rugose fruit virus (ToBRFV) overcomes all known tomato resistance genes, including the durable Tm-2, posing a serious threat to global tomato production. Here, we employed in vitro random mutagenesis to evolve the Tm-2 leucine-rich repeat (LRR) domain and screened ∼8,000 variants for gain-of-function mutants capable of recognizing the ToBRFV movement protein (MP) and triggering hypersensitive cell death. We identified five such mutants.
View Article and Find Full Text PDFProc Biol Sci
September 2025
Department of Biology, Emory University, Atlanta, GA, USA.
Crowding can result in greater disease transmission, yet crowded hosts may also remove infectious propagules from the environment, thereby lowering the encounter rate and infectious dose received by conspecifics. We combined experimental and modelling work to examine the impact of crowding of butterfly larvae on the per-capita risk of infection by a protozoan that is transmitted via the larval food plant, and the resulting infection load in adult butterflies. We reared larvae at different densities and exposed them to low and high doses of parasites.
View Article and Find Full Text PDFDev Cell
September 2025
Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands. Electronic address:
In this issue of Developmental Cell, Yuan et al. explores how the pathogenic bacterium Pseudomonas syringae modulates plant metabolism, particularly through methylglyoxal (MG) accumulation, to suppress immune responses in Arabidopsis. By affecting key proteins TTM2 and CAT2, the pathogen reduces hydrogen peroxide levels, weakening plant defense mechanisms and promoting infection.
View Article and Find Full Text PDFEmerg Microbes Infect
September 2025
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
Enveloped viruses rely on matrix proteins for structural integrity and lifecycle progression. Matrix protein 1 (M1) is the most abundant structural protein of influenza A virus (IAV), playing a multifaceted role in viral uncoating, polymerase activity, vRNA transcription and replication, and assembly and budding. The M1 protein not only interacts with host cells but also regulates viral morphogenesis, thereby influencing viral transmissibility and pathogenicity.
View Article and Find Full Text PDFJ Econ Entomol
September 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
The ability of parasitoid wasps to precisely locate hosts in complex environments is a key factor in suppressing pest populations. Chemical communication plays an essential role in mediating insect behaviors such as locating food sources, hosts, and mates. Odorant receptors (ORs) are the key connection between external odors and olfactory nerves.
View Article and Find Full Text PDF