Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Artificial intelligence (AI) is already widely used in daily communication, but despite concerns about AI's negative effects on society the social consequences of using it to communicate remain largely unexplored. We investigate the social consequences of one of the most pervasive AI applications, algorithmic response suggestions ("smart replies"), which are used to send billions of messages each day. Two randomized experiments provide evidence that these types of algorithmic recommender systems change how people interact with and perceive one another in both pro-social and anti-social ways. We find that using algorithmic responses changes language and social relationships. More specifically, it increases communication speed, use of positive emotional language, and conversation partners evaluate each other as closer and more cooperative. However, consistent with common assumptions about the adverse effects of AI, people are evaluated more negatively if they are suspected to be using algorithmic responses. Thus, even though AI can increase the speed of communication and improve interpersonal perceptions, the prevailing anti-social connotations of AI undermine these potential benefits if used overtly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10073210PMC
http://dx.doi.org/10.1038/s41598-023-30938-9DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
language social
8
social relationships
8
social consequences
8
algorithmic responses
8
communication
4
intelligence communication
4
communication impacts
4
impacts language
4
social
4

Similar Publications

Cognitive impairment and dementia, including Alzheimer's disease (AD), pose a global health crisis, necessitating non-invasive biomarkers for early detection. This review highlights the retina, an accessible extension of the central nervous system (CNS), as a window to cerebral pathology through structural, functional, and molecular alterations. By synthesizing interdisciplinary evidence, we identify retinal biomarkers as promising tools for early diagnosis and risk stratification.

View Article and Find Full Text PDF

Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Immunotherapies for Aging and Age-Related Diseases: Advances, Pitfalls, and Prospects.

Research (Wash D C)

September 2025

NHC Key Laboratory of Tropical Disease Control, School of Life Sciences and Medical Technology, Hainan Medical University, Haikou, Hainan 571199, China.

Aging is characterized by a gradual decline in the functionality of all the organs and tissues, leading to various diseases. As the global population ages, the urgency to develop effective anti-aging strategies becomes increasingly critical due to the growing severity of associated health problems. Immunotherapy offers novel and promising approaches to combat aging by utilizing approaches including vaccines, antibodies, and cytokines to target specific aging-related molecules and pathways.

View Article and Find Full Text PDF

Deep learning has rapidly emerged as a promising toolkit for protein optimization, yet its success remains limited, particularly in the realm of activity. Moreover, most algorithms lack rigorous iterative evaluation, a crucial aspect of protein engineering exemplified by classical directed evolution. This study introduces DeepDE, a robust iterative deep learning-guided algorithm leveraging triple mutants as building blocks and a compact library of ∼1,000 mutants for training.

View Article and Find Full Text PDF