98%
921
2 minutes
20
Vascular calcification is caused by the deposition of calcium salts in the intimal or tunica media layer of the aorta, which increases the risk of cardiovascular events and all-cause mortality. However, the mechanisms underlying vascular calcification are not fully clarified. Recently it has been shown that transcription factor 21 (TCF21) is highly expressed in human and mouse atherosclerotic plaques. In this study we investigated the role of TCF21 in vascular calcification and the underlying mechanisms. In carotid artery atherosclerotic plaques collected from 6 patients, we found that TCF21 expression was upregulated in calcific areas. We further demonstrated TCF21 expression was increased in an in vitro vascular smooth muscle cell (VSMC) osteogenesis model. TCF21 overexpression promoted osteogenic differentiation of VSMC, whereas TCF21 knockdown in VSMC attenuated the calcification. Similar results were observed in ex vivo mouse thoracic aorta rings. Previous reports showed that TCF21 bound to myocardin (MYOCD) to inhibit the transcriptional activity of serum response factor (SRF)-MYOCD complex. We found that SRF overexpression significantly attenuated TCF21-induced VSMC and aortic ring calcification. Overexpression of SRF, but not MYOCD, reversed TCF21-inhibited expression of contractile genes SMA and SM22. More importantly, under high inorganic phosphate (3 mM) condition, SRF overexpression reduced TCF21-induced expression of calcification-related genes (BMP2 and RUNX2) as well as vascular calcification. Moreover, TCF21 overexpression enhanced IL-6 expression and downstream STAT3 activation to facilitate vascular calcification. Both LPS and STAT3 could induce TCF21 expression, suggesting that the inflammation and TCF21 might form a positive feedback loop to amplify the activation of IL-6/STAT3 signaling pathway. On the other hand, TCF21 induced production of inflammatory cytokines IL-1β and IL-6 in endothelial cells (ECs) to promote VSMC osteogenesis. In EC-specific TCF21 knockout (TCF21) mice, VD and nicotine-induced vascular calcification was significantly reduced. Our results suggest that TCF21 aggravates vascular calcification by activating IL-6/STAT3 signaling and interplay between VSMC and EC, which provides new insights into the pathogenesis of vascular calcification. TCF21 enhances vascular calcification by activating the IL-6-STAT3 signaling pathway. TCF21 inhibition may be a new potential therapeutic strategy for the prevention and treatment of vascular calcification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374894 | PMC |
http://dx.doi.org/10.1038/s41401-023-01077-8 | DOI Listing |
Int J Gen Med
September 2025
Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.
Background: Nodular hidradenoma (NH) is a rare benign adnexal tumor originating from sweat glands, often misdiagnosed due to nonspecific clinical manifestations. Ultrasonography (US) plays a critical role in the diagnosis of skin tumors, yet systematic descriptions of its sonographic features remain limited.
Objective: This study aims to investigate the very-high-frequency (VHF) characteristics of eccrine nodular hidradenoma (ENH) and establish key imaging criteria to differentiate it from other cutaneous/subcutaneous lesions.
Cureus
August 2025
Vascular Surgery, Conde S. Januário Hospital, Macao, CHN.
Spontaneous femoral artery pseudoaneurysms (SFAPs) represent a rare vascular entity. We report the successful hybrid management of a large, wide-necked ruptured SFAP in an 85-year-old male. Computed tomography angiography (CTA) confirmed a massive pseudoaneurysm originating from the distal right superficial femoral artery (SFA) with severe circumferential arterial calcification.
View Article and Find Full Text PDFTurk Kardiyol Dern Ars
September 2025
Department of Cardiology, Koç University School of Medicine, Istanbul, Türkiye.
Objective: Coronary artery calcification (CAC) and osteoporosis are common age-related conditions that may share underlying mechanisms such as inflammation and lipid dysregulation. Lipoprotein(a) [Lp(a)] has been suggested as a potential contributor to both processes. This study aims to investigate the relationship between CAC, bone mineral density (BMD), and Lp(a) levels in a statin-naive elderly population.
View Article and Find Full Text PDFCureus
August 2025
Neurosurgery, Tokyo Metropolitan Hiroo Hospital, Tokyo, JPN.
Background: Vascular calcification represents ectopic deposition of calcium phosphate in the arterial wall. Component analysis of calcifications using dual-energy computed tomography (DECT) has helped to elucidate arteriosclerosis, but reports examining carotid calcified plaque remain lacking. The present study qualitatively evaluated calcifications using DECT in patients with stroke in our institution.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China.
Chronic cerebral artery occlusion is an important cause of cerebral ischemic events. Endovascular recanalization is an effective treatment for this condition, but its success depends on appropriate patient selection and assessment. This is a retrospective study that collected patients with chronic cerebral artery occlusion who underwent endovascular recanalization to determine how imaging features from computed tomography angiography - including the extent of internal carotid artery occlusion, the number of calcified vessels, and the degree of calcification in the occluded vessels - affect the success rate of recanalization.
View Article and Find Full Text PDF