98%
921
2 minutes
20
Mesoscopic-sized polyion complex vesicles (PICsomes) with semi-permeable membranes are promising nanoreactors for enzyme prodrug therapy (EPT), mainly due to their ability to accommodate enzymes in their inner cavity. Increased loading efficacy and retained activity of enzymes in PICsomes are crucial for their practical application. Herein, a novel preparation method for enzyme-loaded PICsomes, the stepwise crosslinking (SWCL) method, was developed to achieve both high feed-to-loading enzyme efficiency and high enzymatic activity under in vivo conditions. Cytosine deaminase (CD), which catalyzes the conversion of the 5-fluorocytosine (5-FC) prodrug to cytotoxic 5-fluorouracil (5-FU), was loaded into PICsomes. The SWCL strategy enabled a substantial increase in CD encapsulation efficiency, up to ~44% of the feeding amount. CD-loaded PICsomes (CD@PICsomes) showed prolonged blood circulation to achieve appreciable tumor accumulation via enhanced permeability and retention effect. The combination of CD@PICsomes and 5-FC produced superior antitumor activity in a subcutaneous model of C26 murine colon adenocarcinoma, even at a lower dose than systemic 5-FU treatment, and showed significantly reduced adverse effects. These results reveal the feasibility of PICsome-based EPT as a novel, highly efficient, and safe cancer treatment modality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057300 | PMC |
http://dx.doi.org/10.3390/polym15061368 | DOI Listing |
RSC Med Chem
August 2025
Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States of America.
A strategy for targeting tumor-associated hypoxia utilizes reductase enzyme-mediated cleavage to convert biologically inert prodrugs to their corresponding biologically active parent therapeutic agents selectively in areas of pronounced hypoxia. Small-molecule inhibitors of tubulin polymerization represent unique therapeutic agents for this approach, with the most promising functioning as both antiproliferative agents (cytotoxins) and as vascular disrupting agents (VDAs). VDAs selectively and effectively disrupt tumor-associated microvessels, which are typically fragile and chaotic in nature.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Chemistry, Korea University, Seoul, 02841, South Korea.
Chemodynamic therapy (CDT), leveraging Fenton reactions to generate hydroxyl radicals (•OH) from intracellular hydrogen peroxide (HO), offers a promising cancer treatment strategy due to its high specificity and low systemic toxicity. However, the targeted delivery of •OH-producing prodrugs using covalent organic frameworks (COFs) remains a significant challenge. Here, we report a mitochondria-targeted COF-based nano prodrug, COF-31@P, designed for enhanced CDT efficacy.
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
December 2025
Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
Sodium-dependent multivitamin transporter (SMVT) is a biotin transporter over-expressed in various types of cancer cells and is commonly studied for targeted drug delivery using biotin conjugates. However, such conjugates lack the carboxyl group needed for recognition by SMVT. Previously, we proposed that SMVT is unlikely the transporter of biotin conjugates.
View Article and Find Full Text PDFSmall
September 2025
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China.
Chemotherapy is often hindered by systemic toxicity and poor selectivity. To address these issues, we develop an enzyme-responsive metallopeptide hydrogel (HY-Pd) that integrates enzyme-instructed self-assembly (EISA) and bioorthogonal catalysis for selective tumor-targeted prodrug activation. Upon exposure to alkaline phosphatase (ALP), which is overexpressed in osteosarcoma cells (Saos-2), HY-Pd selectively accumulates and self-assembles into catalytic nanofibers.
View Article and Find Full Text PDFClin Pharmacol
August 2025
Dharmais Cancer Hospital, Jakarta, 11420, Indonesia.
Background: 5-Fluorouracil (5-FU) is a chemotherapy drug used to treat breast cancer. Monitoring 5-FU levels in blood is essential due to its narrow therapeutic range, high individual variability, nonlinear pharmacokinetics, dosage calculations based on body surface area, and susceptibility to toxicity influenced by individual factors such as enzyme polymorphisms.
Methods: An observational study was conducted in 2 types of patients: patients receiving intravenous 5-FU chemotherapy and those receiving oral chemotherapy with capecitabine as the 5-FU prodrug.