98%
921
2 minutes
20
Across the globe, rice cultivation is seriously affected by blast disease, caused by . This disease has caused heavy yield loss to farmers over the past few years. In this background, the most affordable and eco-friendly strategy is to introgress blast-resistant genes from donors into elite rice cultivars. However, it is not only challenging to evolve such resistance lines using conventional breeding approaches, but also a time-consuming process. Therefore, the marker-assisted introduction of resistance genes has been proposed as a rapid strategy to develop durable and broad-spectrum resistance in rice cultivars. The current study highlights the successful introgression of a blast resistance gene, i.e., , into CO 51, an elite rice cultivar which already has another resistance gene named . The presence of two blast resistance genes in the advanced backcross breeding materials (BCF) was confirmed in this study through a foreground selection method using functional markers such as NBS4 and Pi54MAS. The selected positive introgressed lines were further genotyped for background selection with 55 SSR markers that are specific to CO 51. Consequently, both as well as pyramided lines, with 82.7% to 88.1% of the recurrent parent genome recovery, were identified and the selected lines were evaluated under hotspot. The analysis outcomes found that both the lines possessed a high level of resistance against blast disease during the seedling stage itself. In addition to this, it was also noticed that the advanced breeding rice lines that carry + were effective in nature and exhibited a higher degree of resistance against blast disease compared to the lines that were introgressed with a single blast resistance gene. Thus, the current study demonstrates a rapid and a successful introgression and pyramiding of two blast resistance genes, with the help of markers, into a susceptible yet high-yielding elite rice cultivar within a short period of time. Those gene pyramided rice lines can be employed as donors to introgress the blast-resistant genes in other popular susceptible cultivars.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048046 | PMC |
http://dx.doi.org/10.3390/genes14030719 | DOI Listing |
Leukemia
September 2025
Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
Pediatric acute myeloid leukemia (pAML) is a heterogeneous malignancy driven by diverse cytogenetic mutations. While identification of cytogenetic lesions improved risk stratification, prognostication remains inadequate with 30% of standard-risk patients experiencing relapse within 5 years. To deeply characterize pAML heterogeneity and identify poor outcome-associated blast cell profiles, we performed an analysis on 708,285 cells from 164 bone marrow biopsies of 95 patients and 11 healthy controls.
View Article and Find Full Text PDFPhytopathology
September 2025
Bangabandhu Sheikh Mujibur Rahman Agricultural University, Institute of Biotechnology and Genetic Engineering, Gazipur, Salna, Bangladesh, 1706;
Wheat blast caused by the fungus (MoT) pathotype is a catastrophic disease that threatens global food security. Lately, was discovered as a blast resistance gene in wheat genotype S615. However, while has recently been cloned, the precise underlying biochemical and molecular mechanism by which this gene confers resistance against MoT, remains to be fully elucidated.
View Article and Find Full Text PDFVet World
July 2025
Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
Background And Aim: is a multidrug-resistant (MDR) zoonotic pathogen increasingly implicated in infections in both humans and animals, including avian species. Raptors, particularly peregrine falcons, are vulnerable due to their exposure to diverse environments and intensive management practices. This study aimed to identify isolates from peregrine falcons in Saudi Arabia and to characterize their genomic features, phylogenetic relationships, and antimicrobial resistance (AMR) profiles using whole-genome sequencing (WGS).
View Article and Find Full Text PDF3 Biotech
October 2025
ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India.
Just as Gregor Mendel's laws of inheritance laid the foundation for modern genetics, the emergence of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas systems has catalyzed a new era in precision genome engineering. CRISPR/Cas has revolutionized rice ( L.) breeding by enabling precise, transgene-free edits to improve yield, nutrition, and stress tolerance.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China.
Light and darkness are critical environmental factors that regulate plant immune responses. OsPIL1, a phytochrome-interacting factor-like protein, has been implicated in rice immunity against Magnaporthe oryzae, although its underlying mechanism remains unclear. This study aimed to dissect how OsPIL1 integrates light or darkness to modulate rice immunity.
View Article and Find Full Text PDF