Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Early-stage uric acid (UA) abnormality detection is crucial for a healthy human. With the evolution of nanoscience, metal oxide nanostructure-based sensors have become a potential candidate for health monitoring due to their low-cost, easy-to-handle, and portability. Herein, we demonstrate the synthesis of puffy balls-like cobalt oxide nanostructure using a hydrothermal method and utilize them to modify the working electrode for non-enzymatic electrochemical sensor fabrication. The non-enzymatic electrochemical sensor was utilized for UA determination using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The puffy balls-shaped cobalt oxide nanostructure-modified glassy carbon (GC) electrode exhibited excellent electro-catalytic activity during UA detection. Interestingly, when we compared the sensitivity of non-enzymatic electrochemical UA sensors, the DPV technique resulted in high sensitivity (2158 µA/mM.cm) compared to the CV technique (sensitivity = 307 µA/mM.cm). The developed non-enzymatic electrochemical UA sensor showed good selectivity, stability, reproducibility, and applicability in the human serum. Moreover, this study indicates that the puffy balls-shaped cobalt oxide nanostructure can be utilized as electrode material for designing (bio)sensors to detect a specific analyte.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046517PMC
http://dx.doi.org/10.3390/bios13030375DOI Listing

Publication Analysis

Top Keywords

cobalt oxide
16
non-enzymatic electrochemical
16
electrochemical sensor
12
uric acid
8
puffy balls-like
8
oxide nanostructure
8
puffy balls-shaped
8
balls-shaped cobalt
8
electrochemical
5
non-enzymatic
5

Similar Publications

Enhancement of the performance of lithium-ion batteries is a critical strategy for addressing the challenges associated with cost and raw materials. By doping boron (B), aluminum (Al), and aluminum/boron (Al/B) utilizing the sol-gel method, we demonstrate a substantial improvement in the cycling performance of Ni-rich lithium nickel manganese cobalt oxide (NMC) as an electrode. While the initial specific capacitance of the doped samples may be lower than that of the pristine NMC, these samples demonstrate a notable increase in specific capacitance during subsequent cycles, reaching a peak around the 10 cycle and nearing the highest specific capacitance observed in NMC cathodes.

View Article and Find Full Text PDF

Synergistic Coupling of Antenna Effect and Schottky Junction in Tb-Doped Covalent Organic Framework for Enhanced Electrochemiluminescence Sening of Isobutyryl Fentanyl.

Anal Chem

September 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China.

Rational design of both mechanistic pathways and material compositions is essential to advance COF-based electrochemiluminescence (ECL) systems. In this study, aggregation-induced emission covalent organic framework (AIE-COF) nanoprobes with excellent ECL performance were developed based on Tb-functionalized covalent organic framework (Tb@A-COF). The Tb@A-COF system demonstrates enhanced ECL performance through synergistic integration of three complementary mechanisms: (1) (4',4',4',4'-(1,2-ethenediylidene)tetrakis [1,1'-biphenyl]-4-carboxaldehyde (ETBC) ligands function as antenna-like sensitizers that amplify luminescence intensity by 14.

View Article and Find Full Text PDF

All-solid-state Li-metal batteries using solid polymer electrolytes (SPEs) in combination with high-voltage cathodes such as lithium nickel manganese cobalt oxide (NMC) promise enhanced battery safety, energy density, and flexibility. However, understanding the oxidative decomposition of SPEs on the cathode surfaces and characterizing the resulting cathode-electrolyte interphase (CEI) remain challenging both experimentally and computationally. This study introduces a new computational protocol based on ab initio molecular dynamics for simulating the decomposition of PEO:LiTFSI SPE on the NMC-811 cathode surface using a combined electron- and Li+-removal simulation approach.

View Article and Find Full Text PDF

The increasing demand for efficient energy conversion and storage systems necessitates the development of high-performance, cost-effective electrode materials. To address this challenge, we employed rotten (eggplant) juice as a precursor for the fabrication of low-cost, earth-abundant, and active electrode materials based on cobalt oxide (CoO) nanostructures. Different volumes of rotten juice (5 mL, 10 mL, 15 mL, and 20 mL) were utilized during the precipitation process to synthesize CoO nanostructures.

View Article and Find Full Text PDF

AS a low-cost and high-performance catalyst, spinel cobalt oxide (CoO) has two different catalytic active sites (tetrahedral Co and octahedral Co) to drive the activation of peroxymonosulfate (PMS) through Co/Co redox cycle. Tuning Co/Co atomic ratio on the surface of CoO for the construction of a synergy in the Co/Co redox cycle might be an effective way to further boost PMS activation performance of CoO catalyst. Herein, we suggested a metal-doping strategy to regulate Co/Co atomic ratio of CoO by partially substituting Co with inert Mg and formed a series of Mg doped CoO (MCO) catalysts.

View Article and Find Full Text PDF