98%
921
2 minutes
20
The self-nano/microemulsifying drug delivery system is one of the well-established techniques for enhancing the solubility of poorly water-soluble drug molecules. The ratio of oil:surfactant:cosolvent plays a key role in globule size on dispersion into water, but there is very limited information on how a drug molecule affects the size. The rationale of this project was to illustrate the correlation between the particle size of nanoemulsion droplets and molecular descriptors of a drug. In the study, a self-nanoemulsifying preconcentrate containing drug with medium chain triglycerides (oil), dimethylacetamide (DMA, cosolvent), and Kolliphor EL (surfactant) was prepared for 40 drug molecules with diverse physicochemical properties. The self-nanoemulsifying preconcentrate was dispersed in water, and dynamic light scattering particle size was analyzed. A majority of drugs showed a significant increase in globule size compared to blank formulation, while few drugs showed a stark reduction in globule size. It is interesting to understand the attributes of molecules driving the self-emulsification and the diameter of nanoglobules. A systematic correlation of resultant particle size with 1D, 2D, and 3D molecular descriptors (overall more than 700 descriptors) was carried out for the data set using the PaDEL tool kit. The data compilation, curation, and analysis were performed using the SIMCA14 software. In the process of molecular descriptors screening, thereafter curation, 50 descriptors were selected using the genetic algorithm screening. The PLS-DA statistical method was employed for conversion of data into binomial systems. Final group of 5 descriptors: SpMiSpMin2_Bhe, RNCS, TDB9i, JG17, and ETA_Shape showed the correlation with particle size and classifying the drug molecules facilitating increase or decrease in particle size.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.2c01118 | DOI Listing |
J Drug Target
September 2025
Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, INDIA.
Natural phytoconstituents such as betanin and curcumin have attracted interest for their significant antioxidant and anti-inflammatory properties. Their therapeutic efficacy is notably constrained by inadequate bioavailability and reduced skin permeability. The current study developed an ethosome-based gel system for the delivery of betanin and curcumin, with the objective of improving transdermal penetration and providing sustained anti-inflammatory effects.
View Article and Find Full Text PDFSmall
September 2025
Key Laboratory of Electrochemical Power Sources of Hubei Province, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
Hybrid artificial layer based on inorganic/polymer composite endows superior toughness and mechanical strength, which can achieve high stability of lithium metal anode. However, the large particle size and uneven distribution of inorganic fillers hinder the uniform flow of lithium ions across the membrane, making it difficult to achieve smooth lithium metal deposition/stripping. In this work, a chemical lithiation-induced defluorination strategy is proposed to engineer poly(vinylidene difluoride) (PVDF)-based artificial layers, enabling in situ incorporation of highly dispersed LiF nanofiller within the polymer matrix and precise control over the LiF content.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
October 2025
Turkish Accelerator and Radiation Laboratory, 06830 Ankara, Türkiye.
Membrane-protein quality control in Escherichia coli involves coordinated actions of the AAA+ protease FtsH, the insertase YidC and the regulatory complex HflKC. These systems maintain proteostasis by facilitating membrane-protein insertion, folding and degradation. To gain structural insights into a putative complex formed by FtsH and YidC, we performed single-particle cryogenic electron microscopy on detergent-solubilized membrane samples, from which FtsH and YidC were purified using Ni-NTA affinity and size-exclusion chromatography.
View Article and Find Full Text PDFJ Sci Food Agric
September 2025
College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.
Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia.
Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.
Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.