98%
921
2 minutes
20
Developing activity descriptors data-driven machine learning (ML) methods can speed up the design of highly active and low-cost electrocatalysts. Despite the fact that a large amount of activity data for electrocatalysts is stored in the literature, data from different publications are not comparable due to different experimental or computational conditions. In this work, an interpretable ML method, multi-task symbolic regression, was adopted to learn from data in multiple experiments. A universal activity descriptor to evaluate the oxygen evolution reaction (OER) performance of oxide perovskites free of calculations or experiments was constructed and reached high accuracy and generalization ability. Utilizing this descriptor with Bayesian-optimized parameters, a series of compelling double perovskites with excellent OER activity were predicted and further evaluated using first-principles calculations. Finally, the two ML-predicted nickel-based perovskites with the best OER activity were successfully synthesized and characterized experimentally. This work opens a new way to extend machine-learning material design by utilizing multiple data sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3mh00157a | DOI Listing |
J Neurosci Methods
September 2025
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia. Electronic address:
Background: Most researchers rely on popular promoters like the synthetic CAG promoter or human synapsin promoter to transduce various brain neurons. However, their effectiveness in transducing forebrain cholinergic neurons remains unclear.
New Method: We compared efficacy of transduction of cholinergic neurons and parvalbumin-positive neurons in the medial septal area of rats and mice by adeno-associated viruses (AAVs) carrying the green fluorescent protein (GFP) marker gene under three distinct promoters-CAG, synapsin, and the mouse choline acetyltransferase (CHAT) promoter.
J Colloid Interface Sci
August 2025
School of Energy and Power Engineering, Beihang University, Beijing 100191, China.
Developing pH-universal hydrogen evolution reaction (HER) electrocatalysts demands the simultaneous optimization of water dissociation kinetics and hydrogen adsorption. Herein, a CuCo/CoWO heterostructure with an area of 600 cm was fabricated via a facile one-step electrodeposition strategy. It only needs 193.
View Article and Find Full Text PDFSmall Methods
September 2025
School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China.
Magnetic-field enhancement of the oxygen evolution reaction (OER) represents a promising route toward more efficient alkaline water electrolyzers, yet its origin remains debated due to overlapping effects of mass transport and reaction kinetics. Here, we present a general experimental strategy that employs strong forced convection to suppress uncontrolled transport arising from natural diffusion and magnetohydrodynamic (MHD) flows. Using polycrystalline Au electrodes, we show that this approach resolves subtle OER variations under controlled flow and field conditions.
View Article and Find Full Text PDFContraception
September 2025
Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, 490 Illinois St, San Francisco, CA 94158; Bixby Center for Global Reproductive Health, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, 1001 Potrero Ave
Objective: Experiencing intimate partner violence (IPV) can negatively impact young people's reproductive autonomy, including making it more challenging to get contraception. This study examined the association between IPV and delays in obtaining contraception in a sample of young women from California and Texas.
Study Design: The data are from a supplementary study to a cluster randomized controlled trial conducted with young people sexually-active within the past year recruited at 29 community colleges during the COVID-19 pandemic (May 2020-May 2023).
J Colloid Interface Sci
September 2025
School of Material Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 450007, China. Electronic address:
Developing single-atom catalysts (SACs) with dense active sites and universal synthesis strategies remains a critical challenge. Herein, we present a scalable and universal strategy to synthesize high-density transition metal single-atom sites, anchored in nitrogen-doped porous carbon (M-SA@NC, M = Fe, Co, Ni) and investigate their oxygen reduction reaction (ORR) catalytic activity for flexible Zn-air batteries (ZABs). Using a facile coordination-pyrolysis strategy, atomically dispersed M-N sites with high metal loading are achieved.
View Article and Find Full Text PDF