98%
921
2 minutes
20
Background: Assessment of cortical bone porosity and geometry by imaging in vivo can provide useful information about bone quality that is independent of bone mineral density (BMD). Ultrashort echo time (UTE) MRI techniques of measuring cortical bone porosity and geometry have been extensively validated in preclinical studies and have recently been shown to detect impaired bone quality in vivo in patients with osteoporosis. However, these techniques rely on laborious image segmentation, which is clinically impractical. Additionally, UTE MRI porosity techniques typically require long scan times or external calibration samples and elaborate physics processing, which limit their translatability. To this end, the UTE MRI-derived Suppression Ratio has been proposed as a simple-to-calculate, reference-free biomarker of porosity which can be acquired in clinically feasible acquisition times.
Purpose: To explore whether a deep learning method can automate cortical bone segmentation and the corresponding analysis of cortical bone imaging biomarkers, and to investigate the Suppression Ratio as a fast, simple, and reference-free biomarker of cortical bone porosity.
Methods: In this retrospective study, a deep learning 2D U-Net was trained to segment the tibial cortex from 48 individual image sets comprised of 46 slices each, corresponding to 2208 training slices. Network performance was validated through an external test dataset comprised of 28 scans from 3 groups: (1) 10 healthy, young participants, (2) 9 postmenopausal, non-osteoporotic women, and (3) 9 postmenopausal, osteoporotic women. The accuracy of automated porosity and geometry quantifications were assessed with the coefficient of determination and the intraclass correlation coefficient (ICC). Furthermore, automated MRI biomarkers were compared between groups and to dual energy X-ray absorptiometry (DXA)- and peripheral quantitative CT (pQCT)-derived BMD. Additionally, the Suppression Ratio was compared to UTE porosity techniques based on calibration samples.
Results: The deep learning model provided accurate labeling (Dice score 0.93, intersection-over-union 0.88) and similar results to manual segmentation in quantifying cortical porosity (R ≥ 0.97, ICC ≥ 0.98) and geometry (R ≥ 0.82, ICC ≥ 0.75) parameters in vivo. Furthermore, the Suppression Ratio was validated compared to established porosity protocols (R ≥ 0.78). Automated parameters detected age- and osteoporosis-related impairments in cortical bone porosity (P ≤ .002) and geometry (P values ranging from <0.001 to 0.08). Finally, automated porosity markers showed strong, inverse Pearson's correlations with BMD measured by pQCT (|R| ≥ 0.88) and DXA (|R| ≥ 0.76) in postmenopausal women, confirming that lower mineral density corresponds to greater porosity.
Conclusion: This study demonstrated feasibility of a simple, automated, and ionizing-radiation-free protocol for quantifying cortical bone porosity and geometry in vivo from UTE MRI and deep learning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121925 | PMC |
http://dx.doi.org/10.1016/j.bone.2023.116743 | DOI Listing |
Nucl Med Rev Cent East Eur
September 2025
Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran, Islamic Republic Of.
A 37-year-old man presented with swelling and erythema in the left first toe after a prior trauma, suspicious for osteomyelitis. X-ray and computed tomography (CT) scans revealed a radiolucent lesion with cortical disruption. A 99mTc/tricine/HYNIC ubiquicidin 29-41 (UBI) scintigraphy showed increased uptake but a non-accumulative time-activity curve, indicating a false positive for infection.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
September 2025
Center for Applied Biomechanics, University of Virginia, 4040 Lewis and Clark Drive, Charlottesville, VA, 22911, United States.
Seatbelt-induced pelvic iliac wing injuries have been observed since the 1970s, but only recently has there been quantification of fracture tolerance and injury risk of the iliac wing. Previous studies have shown a wide variation in iliac wing fracture tolerance with no significant relationships to pelvis size, sex, or other factors. A weighted average bone density (BD) calculation of the entire iliac wing produced the best predictive performance of fracture tolerance in parametric (Weibull) survival models.
View Article and Find Full Text PDFBMC Oral Health
September 2025
Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
Background: A modified pull-through approach represents a promising treatment strategy to access tumors in the posterior oral cavity. The design of the wedge osteotomy plays a key role in preserving postoperative mechanical stability while enabling surgical access. However, the optimal osteotomy design to reduce fracture risk remains unclear.
View Article and Find Full Text PDFMed Eng Phys
October 2025
Centre for Simulation in Bioengineering, Biomechanics and Biomaterials (CS3B), Department of Mechanical Engineering, School of Engineering of Bauru, São Paulo State University (UNESP), Bauru, São Paulo, Brazil. Electronic address:
This study aimed to evaluate the near-cortical over-drilling technique on the mechanical behaviour of bone-plate constructs in a rabbit transverse femoral fracture. In vitro biomechanical testing and finite element (FE) models were used for analyses. Rabbits' bones (n = 14) were divided into two groups: G1 - without near-cortical over-drilling, and G2 - with near-cortical over-drilling.
View Article and Find Full Text PDFGlobal Spine J
September 2025
Department of Spinal Surgery, Zhucheng People's Hospital, Zhucheng, China.
Study DesignRetrospective cohort study.ObjectivesUnilateral percutaneous kyphoplasty (PKP) is widely used to treat osteoporotic vertebral compression fractures (OVCF) in elderly patients. Cement leakage is the most common complication and may cause serious consequences.
View Article and Find Full Text PDF