Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Studies showed that SARS-CoV-2 can directly target the kidney and induce renal damage. As the cell surface receptor for SARS-CoV-2 infection, the angiotensin-converting enzyme 2 (ACE2) plays a pivotal role for renal physiology and function. Thus, it is important to understand ACE2 through which pathway influences the pathogenesis of renal damage induced by COVID-19. In this study, we first performed an eQTL mapping for Ace2 in kidney tissues in 53 BXD mice strains. Results demonstrated that Ace2 is highly expressed and strongly controlled by a genetic locus on chromosome 16 in the kidney, with six genes (Dnase1, Vasn, Usp7, Abat, Mgrn1, and Rbfox1) dominated as the upstream modulator, as they are highly correlated with Ace2 expression. Gene co-expression analysis showed that Ace2 co-variates are significantly involved in the renin-angiotensin system (RAS) pathway which acts as a reno-protector. Importantly, we also found that Ace2 is positively correlated with Pdgf family members, particularly Pdgfc, which showed the most association among the 76 investigated growth factors. Mammalian Phenotype Ontology enrichment indicated that the cognate transcripts for both Ace2 and Pdgfc were mainly involved in regulating renal physiology and morphology. Among which, Cd44, Egfr, Met, Smad3, and Stat3 were identified as hub genes through protein-protein interaction analysis. Finally, in aligning with our systems genetics findings, we found ACE2, pdgf family members, and RAS genes decreased significantly in the CAKI-1 kidney cancer cells treated with S protein and receptor binding domain structural protein. Collectively, our data suggested that ACE2 work with RAS, PDGFC, as well as their cognate hub genes to regulate renal function, which could guide for future clinical prevention and targeted treatment for COVID-19-induced renal damage outcomes. KEY MESSAGES: • Ace2 is highly expressed and strongly controlled by a genetic locus on chromosome 16 in the kidney. • Ace2 co-variates are enriched in the RAS pathway. • Ace2 is strongly correlated with the growth factor Pdgfc. • Ace2 and Pdgfc co-expressed genes involved in the regulation of renal physiology and morphology. • SARS-CoV-2 spike glycoprotein induces down-regulation of Ace2, RAS, and Pdgfc.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034233PMC
http://dx.doi.org/10.1007/s00109-023-02304-9DOI Listing

Publication Analysis

Top Keywords

ace2
16
• ace2
16
renal damage
12
renal physiology
12
systems genetics
8
ace2 highly
8
highly expressed
8
expressed controlled
8
controlled genetic
8
genetic locus
8

Similar Publications

New SARS-CoV-2 variants continue to emerge and may cause new waves of COVID-19. Antibody evasion is a major driver of variant emergence but variants can also exhibit altered capacity to enter lung cells and to use ACE2 species orthologues for cell entry. Here, we assessed cell line tropism, usage of ACE2 orthologues and antibody evasion of variant MC.

View Article and Find Full Text PDF

The COVID-19 pandemic remains a global health crisis, with successive SARS-CoV-2 variants exhibiting enhanced transmissibility and immune evasion. Notably, the Omicron variant harbors extensive mutations in the spike protein's receptor-binding domain (RBD), altering viral fitness. While temperature is a critical environmental factor modulating viral stability and transmission, its molecular-level effects on variant-specific RBD-human angiotensin-converting enzyme 2 (hACE2) interactions remain underexplored.

View Article and Find Full Text PDF

Predicted early fusion intermediates in the spike of ACE2-utilising bat coronavirus unveil broad-spectrum antiviral mechanisms.

Clin Transl Med

September 2025

Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China.

View Article and Find Full Text PDF

Sacha inchi shell extract (SISE), whose main active substance is a polysaccharide, has been reported to have hypotensive effects. Consequently, a novel acidic arabinogalactan, termed SISP, was isolated from SISE, and its efficacy in protecting vascular endothelial cells was investigated. SISP had a molecular weight of 57.

View Article and Find Full Text PDF

DMBT1 promotes SARS-CoV-2 infection and its SRCR-derived peptide inhibits SARS-CoV-2 infection.

Antiviral Res

September 2025

Department of Immunology and Pathogen Biology, Key Laboratory of Pathogen and Host-Interactions, Ministry of Education, School of Medicine, Tongji University, Shanghai, 200331, China. Electronic address:

DMBT1 is a large scavenger receptor cysteine rich (SRCR) B protein that has been reported as a tumor suppressor gene and a co-receptor for HIV-1 infection. Here, we found DMBT1 is a major mucosal protein bound to SARS-CoV-2. Overexpression of DMBT1 in 293T cells may enhanced infection by SARS-CoV-2 in ACE2 dependent manner.

View Article and Find Full Text PDF