Microbial nitrate reduction in propane- or butane-based membrane biofilm reactors under oxygen-limiting conditions.

Water Res

Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia. Electronic address:

Published: May 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nitrate contamination has been commonly detected in water environments and poses serious hazards to human health. Previously methane was proposed as a promising electron donor to remove nitrate from contaminated water. Compared with pure methane, natural gas, which not only contains methane but also other short chain gaseous alkanes (SCGAs), is less expensive and more widely available, representing a more attractive electron source for removing oxidized contaminants. However, it remains unknown if these SCGAs can be utilized as electron donors for nitrate reduction. Here, two lab-scale membrane biofilm reactors (MBfRs) separately supplied with propane and butane were operated under oxygen-limiting conditions to test its feasibility of microbial nitrate reduction. Long-term performance suggested nitrate could be continuously removed at a rate of ∼40-50 mg N/L/d using propane/butane as electron donors. In the absence of propane/butane, nitrate removal rates significantly decreased both in the long-term operation (∼2-10 and ∼4-9 mg N/L/d for propane- and butane-based MBfRs, respectively) and batch tests, indicating nitrate bio-reduction was driven by propane/butane. The consumption rates of nitrate and propane/butane dramatically decreased under anaerobic conditions, but recovered after resupplying limited oxygen, suggesting oxygen was an essential triggering factor for propane/butane-based nitrate reduction. High-throughput sequencing targeting 16S rRNA, bmoX and narG genes indicated Mycobacterium/Rhodococcus/Thauera were the potential microorganisms oxidizing propane/butane, while various denitrifiers (e.g. Dechloromonas, Denitratisoma, Zoogloea, Acidovorax, Variovorax, Pseudogulbenkiania and Rhodanobacter) might perform nitrate reduction in the biofilms. Our findings provide evidence to link SCGA oxidation with nitrate reduction under oxygen-limiting conditions and may ultimately facilitate the design of cost-effective techniques for ex-situ groundwater remediation using natural gas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.119887DOI Listing

Publication Analysis

Top Keywords

nitrate reduction
24
oxygen-limiting conditions
12
nitrate
11
microbial nitrate
8
propane- butane-based
8
membrane biofilm
8
biofilm reactors
8
natural gas
8
electron donors
8
reduction
6

Similar Publications

Arbuscular mycorrhizal fungi enhance nitrate ammonification in hyphosphere soil.

New Phytol

September 2025

State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.

Microbial nitrate ammonification is a crucial process to retain nitrogen (N) in soils, thereby reducing N loss. Nitrate ammonification has been studied in enrichment and axenic bacterial cultures but so far has been merely ignored in environmental studies. In particular, the capability of arbuscular mycorrhizal fungi (AMF) to regulate nitrate ammonification has not yet been explored.

View Article and Find Full Text PDF

Application of High-Entropy Materials in Promoting Electrocatalytic Nitrogen Cycle.

Small Methods

September 2025

The Research Institute for Advanced Manufacturing, and Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China.

Nitrogen cycle is a fundamental biogeochemical loop existed for millions of years, which involves the transformation of nitrogen-containing chemicals in the environment. However, human activities, especially those since the Industrial Revolution, have significantly disrupted this balance, leading to environmental and energy challenges. Electrocatalysis nitrogen cycle (ENC) offers a promising alternative for the sustainable transformation of nitrogen compounds en route toward rebalancing, with reactions such as the electrocatalytic nitrogen reduction reaction (eNRR) and nitrate/nitrite reduction reaction (eNORR/eNORR) emerging as sustainable alternatives to the traditional Haber-Bosch process.

View Article and Find Full Text PDF

Objectives: Antibiotic resistance towards penicillin has been attempted to counter by chemically modifying ampicillin through the conjugation with silver nanoparticles (AgNPs). The current study optimizes the conditions for synthesizing and characterizing AgNP-ampicillin to quantify the conjugation extent, evaluate the antibacterial efficacy, and explore the underlying antibacterial mechanisms.

Materials And Methods: AgNPs were synthesized from silver nitrate by chemical reduction method, silica-coated with tetraethyl orthosilicate (TEOS) and amine functionalized by (3-aminopropyl) triethoxysilane (APTES), which was then conjugated with ampicillin via the carbodiimide chemistry.

View Article and Find Full Text PDF

g-CN/BiO hetero-nanosheets as a superior electrocatalyst for nitrate reduction to ammonia.

Chem Commun (Camb)

September 2025

State Key Laboratory of New Textile Materials & Advanced Processing Technology, College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China.

The faradaic efficiency of the electro-synthesis of ammonia using the nitrate reduction reaction (NORR) relies on an electrocatalyst to hydrogenate NO and simultaneously suppress the hydrogen evolution reaction (HER). Due to the formation of a heterostructure, the faradaic efficiency of g-CN/BiO reaches 91.12% at -0.

View Article and Find Full Text PDF

Nitric oxide (NO) is essential for cardiovascular health and is purported as an ergogenic aid. Endothelial dysfunction and reduced endogenous NO production are hallmarks of heart failure (HF), which may contribute to impaired exercise capacity. Oral inorganic nitrate supplementation offers an exogenous route to increase bioavailable NO via reduction of nitrate by oral commensal bacteria.

View Article and Find Full Text PDF