Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Climate change is already having profound effects on biodiversity, but climate change adaptation has yet to be fully incorporated into area-based management tools used to conserve biodiversity, such as protected areas. One main obstacle is the lack of consensus regarding how impacts of climate change can be included in spatial conservation plans. We propose a climate-smart framework that prioritizes the protection of climate refugia-areas of low climate exposure and high biodiversity retention-using climate metrics. We explore four aspects of climate-smart conservation planning: (1) climate model ensembles; (2) multiple emission scenarios; (3) climate metrics; and (4) approaches to identifying climate refugia. We illustrate this framework in the Western Pacific Ocean, but it is equally applicable to terrestrial systems. We found that all aspects of climate-smart conservation planning considered affected the configuration of spatial plans. The choice of climate metrics and approaches to identifying refugia have large effects in the resulting climate-smart spatial plans, whereas the choice of climate models and emission scenarios have smaller effects. As the configuration of spatial plans depended on climate metrics used, a spatial plan based on a single measure of climate change (e.g., warming) will not necessarily be robust against other measures of climate change (e.g., ocean acidification). We therefore recommend using climate metrics most relevant for the biodiversity and region considered based on a single or multiple climate drivers. To include the uncertainty associated with different climate futures, we recommend using multiple climate models (i.e., an ensemble) and emission scenarios. Finally, we show that the approaches we used to identify climate refugia feature trade-offs between: (1) the degree to which they are climate-smart, and (2) their efficiency in meeting conservation targets. Hence, the choice of approach will depend on the relative value that stakeholders place on climate adaptation. By using this framework, protected areas can be designed with improved longevity and thus safeguard biodiversity against current and future climate change. We hope that the proposed climate-smart framework helps transition conservation planning toward climate-smart approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eap.2852DOI Listing

Publication Analysis

Top Keywords

climate change
24
climate
21
climate metrics
20
conservation planning
16
climate-smart conservation
12
emission scenarios
12
spatial plans
12
climate-smart
8
planning climate
8
protected areas
8

Similar Publications

Redefining agroecological zones in China to mitigate climate change impacts on maize production.

Mol Plant

September 2025

National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China. Electronic address:

This study introduces Multi-Dimensional Environment (MDE) zoning to enhance maize resilience and improve stagnant yields in China amidst climate change. Utilizing comprehensive environmental and yield data, MDE zoning accurately identifies areas for targeted, climate-adaptive breeding. The tool provides a flexible framework for updates using annual variety testing and daily environmental data, optimizing production and resource allocation.

View Article and Find Full Text PDF

Sugar metabolism is commonly implicated as crucial in the transition between growth and cessation during winter; however, its exact role remains elusive. The evergreen iris (Iris japonica) ceases growth in winter without entering endodormancy, yet it continues to sustain sugar metabolism and transport throughout the season. Here, we elucidate the mechanisms underlying the sugar-mediated growth transition-the shift between growth and cessation-in I.

View Article and Find Full Text PDF

Objective: The food system is a major contributor to the global burden of disease, ecosystem destruction and climate change, posing considerable threats to human and planetary health and economic stability. Evidence based food policy is fundamental to food system transformation globally, nationally and at a local or institutional level. The study aimed to critically review the content of universities' food sustainability (FS) policy documents.

View Article and Find Full Text PDF