Bioscience
September 2025
Plankton, a diverse group of aquatic organisms, make Earth livable, regulate aquatic life, and provide benefits to human societies such as access to clean water, food security, and well-being. They also support economies and inspire biotechnological innovations. This article aims to raise awareness of the value of plankton to humanity and serves as an informative guide for aquatic professionals, policymakers, and anyone interested in plankton.
View Article and Find Full Text PDFUnderstanding the spawning strategies of large pelagic fish could provide insights into their underlying evolutionary drivers, but large-scale information on spawning remains limited. Here we leverage a near-global larval dataset of 15 large pelagic fish taxa to develop habitat suitability models and use these as a proxy for spawning grounds. Our analysis reveals considerable consistency in spawning in time and space, with 10 taxa spawning in spring/summer and 9 taxa spawning off Northwest Australia.
View Article and Find Full Text PDFSci Total Environ
November 2024
Responses of organisms to climate warming are variable and complex. Effects on species distributions are already evident and mean global surface ocean temperatures are likely to warm by up to 4.1 °C by 2100, substantially impacting the physiology and distributions of ectotherms.
View Article and Find Full Text PDFHabitat-forming organisms provide three-dimensional structure that supports abundant and diverse communities. Variation in the morphological traits of habitat formers will therefore likely influence how they facilitate associated communities, either via food and habitat provisioning, or by altering predator-prey interactions. These mechanisms, however, are typically studied in isolation, and thus, we know little of how they interact to affect associated communities.
View Article and Find Full Text PDFOceans beyond the continental shelf represent the largest yet least protected environments. The new agreement to increase protection targets to 30% by 2030 and the recent United Nations (UN) High Seas Treaty try to address this gap, and an increase in the declaration of oceanic Marine Protected Areas (oMPAs) in waters beyond 200 m in depth is likely. Here we find that there is contradictory evidence concerning the benefits of oMPAs in terms of protecting pelagic habitats, providing refuge for highly mobile species, and potential fisheries benefits.
View Article and Find Full Text PDFAnthropogenic activities threaten global biodiversity and ecosystem services. Yet, area-based conservation efforts typically target biodiversity protection whilst minimising conflict with economic activities, failing to consider ecosystem services. Here we identify priority areas that maximise both the protection of mangrove biodiversity and their ecosystem services.
View Article and Find Full Text PDFTrends Ecol Evol
October 2023
Larvaceans are gelatinous zooplankton abundant throughout the ocean. Larvaceans have been overlooked in research because they are difficult to collect and are perceived as being unimportant in biogeochemical cycles and food-webs. We synthesise evidence that their unique biology enables larvaceans to transfer more carbon to higher trophic levels and deeper into the ocean than is commonly appreciated.
View Article and Find Full Text PDFClimate change is already having profound effects on biodiversity, but climate change adaptation has yet to be fully incorporated into area-based management tools used to conserve biodiversity, such as protected areas. One main obstacle is the lack of consensus regarding how impacts of climate change can be included in spatial conservation plans. We propose a climate-smart framework that prioritizes the protection of climate refugia-areas of low climate exposure and high biodiversity retention-using climate metrics.
View Article and Find Full Text PDFNat Commun
February 2023
Zooplankton are major consumers of phytoplankton primary production in marine ecosystems. As such, they represent a critical link for energy and matter transfer between phytoplankton and bacterioplankton to higher trophic levels and play an important role in global biogeochemical cycles. In this Review, we discuss key responses of zooplankton to ocean warming, including shifts in phenology, range, and body size, and assess the implications to the biological carbon pump and interactions with higher trophic levels.
View Article and Find Full Text PDFKnowing the distribution of fish larvae can inform fisheries science and resource management in several ways, by: 1) providing information on spawning areas; 2) identifying key areas to manage and conserve; and 3) helping to understand how fish populations are affected by anthropogenic pressures, such as overfishing and climate change. With the expansion of industrial fishing activity after 1945, there was increased sampling of fish larvae to help better understand variation in fish stocks. However, large-scale larval records are rare and often unavailable.
View Article and Find Full Text PDFClimate change is expected to profoundly affect key food production sectors, including fisheries and agriculture. However, the potential impacts of climate change on these sectors are rarely considered jointly, especially below national scales, which can mask substantial variability in how communities will be affected. Here, we combine socioeconomic surveys of 3,008 households and intersectoral multi-model simulation outputs to conduct a sub-national analysis of the potential impacts of climate change on fisheries and agriculture in 72 coastal communities across five Indo-Pacific countries (Indonesia, Madagascar, Papua New Guinea, Philippines, and Tanzania).
View Article and Find Full Text PDFProjections of climate change impacts on marine ecosystems have revealed long-term declines in global marine animal biomass and unevenly distributed impacts on fisheries. Here we apply an enhanced suite of global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP), forced by new-generation Earth system model outputs from Phase 6 of the Coupled Model Intercomparison Project (CMIP6), to provide insights into how projected climate change will affect future ocean ecosystems. Compared with the previous generation CMIP5-forced Fish-MIP ensemble, the new ensemble ecosystem simulations show a greater decline in mean global ocean animal biomass under both strong-mitigation and high-emissions scenarios due to elevated warming, despite greater uncertainty in net primary production in the high-emissions scenario.
View Article and Find Full Text PDFJ Fish Biol
September 2021
The black marlin Istiompax indica is an apex marine predator and is susceptible to overfishing. The movement ecology of the species remains poorly known, particularly within the Indian Ocean, which has hampered assessment of their conservation status and fisheries management requirements. Here, we used pop-up archival satellite tags to track I.
View Article and Find Full Text PDFMutualism is a form of symbiosis whereby both parties benefit from the relationship. An example is cleaning symbiosis, which has been observed in terrestrial and marine environments. The most recognized form of marine cleaning symbiosis is that of cleaner fishes and their clients.
View Article and Find Full Text PDFSci Data
September 2020
Zooplankton biomass data have been collected in Australian waters since the 1930s, yet most datasets have been unavailable to the research community. We have searched archives, scanned the primary and grey literature, and contacted researchers, to collate 49187 records of marine zooplankton biomass from waters around Australia (0-60°S, 110-160°E). Many of these datasets are relatively small, but when combined, they provide >85 years of zooplankton biomass data for Australian waters from 1932 to the present.
View Article and Find Full Text PDFJ Anim Ecol
November 2020
Individual body size strongly influences the trophic role of marine organisms and the structure and function of marine ecosystems. Quantifying trophic position-individual body size relationships (trophic allometries) underpins the development of size-structured ecosystem models to predict abundance and the transfer of energy through ecosystems. Trophic allometries are well studied for fishes but remain relatively unexplored for cephalopods.
View Article and Find Full Text PDFPomatomus saltatrix is an important recreational fishing species with seven major populations worldwide. The reproductive biology of the southwest Pacific Ocean (east Australian) population is uncertain, with both an extended spawning and multiple spawning periods previously hypothesised. Here we demonstrate an altered sex ratio biased towards females and a larger length at 50% maturity (L) compared to those recorded for the population 40 years ago, before comprehensive management strategies were implemented.
View Article and Find Full Text PDFLarval fishes are a useful metric of marine ecosystem state and change, as well as species-specific patterns in phenology. The high level of taxonomic expertise required to identify larval fishes to species level, and the considerable effort required to collect samples, make these data very valuable. Here we collate 3178 samples of larval fish assemblages, from 12 research projects from 1983-present, from temperate and subtropical Australian pelagic waters.
View Article and Find Full Text PDFSci Data
February 2018
Chlorophyll a is the most commonly used indicator of phytoplankton biomass in the marine environment. It is relatively simple and cost effective to measure when compared to phytoplankton abundance and is thus routinely included in many surveys. Here we collate 173, 333 records of chlorophyll a collected since 1965 from Australian waters gathered from researchers on regular coastal monitoring surveys and ocean voyages into a single repository.
View Article and Find Full Text PDFTrends Ecol Evol
March 2017
Size-based ecosystem modeling is emerging as a powerful way to assess ecosystem-level impacts of human- and environment-driven changes from individual-level processes. These models have evolved as mechanistic explanations for observed regular patterns of abundance across the marine size spectrum hypothesized to hold from bacteria to whales. Fifty years since the first size spectrum measurements, we ask how far have we come? Although recent modeling studies capture an impressive range of sizes, complexity, and real-world applications, ecosystem coverage is still only partial.
View Article and Find Full Text PDFSince 2008, 26 glider missions have been undertaken along the continental shelf of southeastern Australia. Typically these missions have spanned the continental shelf on the inshore edge of the East Australian Current from 29.5-33.
View Article and Find Full Text PDF