98%
921
2 minutes
20
Objective: To explore the effects of transcranial direct current stimulation followed by treadmill training on dual-task gait performance and contralesional cortical activity in chronic stroke patients.
Methods: Forty-five chronic stroke participants were randomized into 3 groups: a bilateral transcranial direct current stimulation and treadmill training group; a cathodal transcranial direct current stimulation and treadmill training group; and a sham transcranial direct current stimulation and treadmill training group for 50 min per session (20 min transcranial direct current stimulation followed by 30 min treadmill training), 3 sessions per week for 4 weeks. Outcome measures included cognitive dual-task walking, motor dual-task walking, walking performance, contralesional cortical activity, and lower-extremity motor control.
Results: The cathodal transcranial direct current stimulation + treadmill training group showed significantly greater improvements in cognitive dual-task walking speed than the other groups (p cathodal vs sham = 0.006, p cathodal vs bilateral = 0.016). In the cathodal transcranial direct current stimulation + treadmill training group the silent period duration increased significantly more than in the other groups (p < 0.05). Changes in motor evoked potentials in the cathodal transcranial direct current stimulation + treadmill training group were greater than those in the sham transcranial direct current stimulation + treadmill training group (p < 0.05). No significant changes were observed in the bilateral transcranial direct current stimulation + treadmill training group.
Conclusion: Cathodal transcranial direct current stimulation followed by treadmill training is an effective intervention for improving cognitive dual-task walking and modulating contralesional cortical activity in chronic stroke. No beneficial effects were observed after bilateral transcranial direct current stimulation and treadmill training.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065121 | PMC |
http://dx.doi.org/10.2340/jrm.v55.5258 | DOI Listing |
CNS Neurosci Ther
September 2025
Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Objective: Traumatic brain injury (TBI), a prevalent neurological disorder worldwide, is marked by varying degrees of neurological dysfunction. A key contributor to secondary damage and impediments in the repair process is the unregulated activation of microglia, which triggers neuroinflammation. Emerging evidence highlights the therapeutic potential of transcranial pulsed current stimulation (tPCS) in mitigating neurological deficits.
View Article and Find Full Text PDFGait Posture
September 2025
School of Business, Social and Decision Sciences, Constructor University Bremen, Constructor University, Campus Ring 1, Bremen 28759, Germany.
Background: Age-related declines in dynamic balance and cognitive control increase fall risk in older adults (OA). Non-invasive brain stimulation, such as anodal transcranial direct current stimulation (a-tDCS), may enhance training outcomes. However, it remains unclear whether stimulation over motor or prefrontal regions is more effective for improving dynamic balance training (DBT) in OA.
View Article and Find Full Text PDFBMJ Open
September 2025
Faculdade de Ciências da Saúde do Trairi, Universidade Federal do Rio Grande do Norte, Santa Cruz, Brazil.
Introduction: Osteoarthritis (OA) is a degenerative and progressive joint condition causing pain and disability. Physical exercise is recognised as the most effective intervention since individuals with this condition often experience muscle weakness, balance deficits and chronic pain. Additionally, knee osteoarthritis (KOA) is associated with central sensitisation, contributing to chronic pain conditions.
View Article and Find Full Text PDFSci Adv
September 2025
Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
Advances in brain stimulation have made it possible to target smaller and smaller regions for electromagnetic stimulation, in the hopes of producing increasingly focal neural effects. However, the brain is extensively interconnected, and the neurons comprising those connections may themselves be particularly susceptible to neurostimulation. Here, we test this hypothesis by identifying long-range projections in single-unit recordings from nonhuman primates receiving transcranial alternating current stimulation.
View Article and Find Full Text PDFJ Behav Addict
September 2025
5Addiction Science Lab, Department of Psychology and Cognitive Science, University of Trento, Trento, Rovereto,Italy.
Background And Aims: This scoping review aims to identify current forms of interventions for Problematic Usage of the Internet (PUI) to inform more effective intervention and policy-making initiatives grounded in robust empirical evidence.
Methods: The search was conducted in the PubMed, Scopus, and PsycINFO databases until October 12, 2024. Empirical research presenting data on interventions for PUI and written in English was included without restrictions of age groups, types of interventions, or types of PUI.