98%
921
2 minutes
20
The molecular mechanisms of angiogenesis have been intensely studied, but many genes that control endothelial behavior and fate still need to be described. Here, we characterize the role of Apold1 (Apolipoprotein L domain containing 1) in angiogenesis in vivo and in vitro. Single-cell analyses reveal that - across tissues - the expression of Apold1 is restricted to the vasculature and that Apold1 expression in endothelial cells (ECs) is highly sensitive to environmental factors. Using Apold1 mice, we find that Apold1 is dispensable for development and does not affect postnatal retinal angiogenesis nor alters the vascular network in adult brain and muscle. However, when exposed to ischemic conditions following photothrombotic stroke as well as femoral artery ligation, Apold1 mice display dramatic impairments in recovery and revascularization. We also find that human tumor endothelial cells express strikingly higher levels of Apold1 and that Apold1 deletion in mice stunts the growth of subcutaneous B16 melanoma tumors, which have smaller and poorly perfused vessels. Mechanistically, Apold1 is activated in ECs upon growth factor stimulation as well as in hypoxia, and Apold1 intrinsically controls EC proliferation but not migration. Our data demonstrate that Apold1 is a key regulator of angiogenesis in pathological settings, whereas it does not affect developmental angiogenesis, thus making it a promising candidate for clinical investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328887 | PMC |
http://dx.doi.org/10.1007/s10456-023-09870-z | DOI Listing |
Cells
December 2024
Laboratory of Molecular Parasitology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, 6041 Gosselies, Belgium.
The mammalian Apolipoprotein-L families (APOLs) contain several isoforms of membrane-interacting proteins, some of which are involved in the control of membrane dynamics (traffic, fission and fusion). Specifically, human APOL1 and APOL3 appear to control membrane remodeling linked to pathogen infection. Through its association with Non-Muscular Myosin-2A (NM2A), APOL1 controls Golgi-derived trafficking of vesicles carrying the lipid scramblase Autophagy-9A (ATG9A).
View Article and Find Full Text PDFSci Rep
November 2024
Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.
Systemic lupus erythematosus (SLE) is an autoimmune disease that affects multiple organs, yet its underlying mechanisms remain unclear, and precise biomarkers are lacking. In this study, we employed Mendelian randomization and HEIDI tools to comprehensively analyze large-scale Genome-Wide Association Study (GWAS) and expression Quantitative Trait Loci (eQTL) data, leading to the identification of seven novel potential functional genes associated with SLE, including BLK, ELF1, STIM1, B3GALT6, APOLD1, INPP5B, and FHL3. Subsequent investigations revealed a significant downregulation of ELF1 gene expression in CD4 T cells of SLE patients compared to healthy controls.
View Article and Find Full Text PDFRecent Pat Anticancer Drug Discov
May 2025
Department of Urology, Army Medical Center, Chongqing, 400042, China.
Background: Bladder cancer exhibits substantial heterogeneity encompassing genetic expressions and histological features. This heterogeneity is predominantly attributed to alternative splicing (AS) and AS-regulated splicing factors (SFs), which, in turn, influence bladder cancer development, progression, and response to treatment.
Objective: This study aimed to explore the immune landscape of aberrant AS in bladder cancer and establish the prognostic signatures for survival prediction.
Ann Hepatol
October 2024
Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China; Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhej
Introduction And Objectives: This study aimed to investigate the association between biological aging and liver fibrosis in patients with metabolic dysfunction-associated steatotic liver disease (MASLD).
Materials And Methods: We analyzed NHANES 2017-2020 data to calculate phenotypic age. Hepatic steatosis and fibrosis were identified using controlled attenuation parameters (CAP), fatty liver index (FLI) and transient elastography (TE).
Zhonghua Kou Qiang Yi Xue Za Zhi
June 2024
Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine & College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology &
To clarify the potential correlation between biological changes of meninges in periodontitis mice and cognitive impairment by analyzing the biological changes of meninges in periodontitis mice using single-cell RNA sequencing. Thirty C57BL/6 mice were divided into two groups by using random number table method (15 mice in each group). Mice in the control group were locally administered 2% carboxyl methyl cellulose (CMC) without (Pg) on both buccal sides.
View Article and Find Full Text PDF