Current development of β-carboline derived potential antimalarial scaffolds.

Eur J Med Chem

Amity Institute of Biotechnology, Amity University, Sector 125, Noida, 201303, Uttar Pradesh, India. Electronic address:

Published: April 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

β-Carboline alkaloids are an eminent class of nitrogen-based natural alkaloids and therapeutic molecules which exert various pharmacological activities through diverse mechanisms. A lot of attention has recently been directed towards this moiety in order to develop effective antimalarial drugs. "Malaria", an acute febrile illness caused by diverse Plasmodium parasites, is a continuing and escalating problem that devastates economically less developed countries by significantly increased morbidity and mortality rates. The mounting parasite resistance towards the antimalarial drugs and augmenting the 'habitat of the insect vector' are creating a catastrophe, indicating an urgent need for new efficacious therapeutics to combat this tropical disease. This article comprehensively encapsulates the clinical and preclinical antimalarial scaffolds comprising β-carboline moiety in their structure. Herein, various classes of natural and semi-synthetic analogues of β-carbolines reported in the last decade (2011-2021) have been extensively studied and illustrated. This review will help the readers to develop an insight into the β-carboline based antimalarials and molecular mechanisms lying behind their mode of action, which is anticipated to be beneficial for the future development of new β-carboline based therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2023.115247DOI Listing

Publication Analysis

Top Keywords

development β-carboline
8
antimalarial scaffolds
8
antimalarial drugs
8
β-carboline based
8
β-carboline
5
current development
4
β-carboline derived
4
derived potential
4
antimalarial
4
potential antimalarial
4

Similar Publications

Comparison of Navier-Stokes and lattice Boltzmann solvers for subject-specific modelling of intracranial aneurysms.

Comput Biol Med

September 2025

INSIGNEO Institute for in silico medicine, University of Sheffield, UK; School of Mechanical, Aerospace and Civil Engineering, University of Sheffield, UK. Electronic address:

Modelling cardiovascular disease is at the forefront of efforts to use computational tools to assist in the analysis and forecasting of an individual's state of health. To build trust in such tools, it is crucial to understand how different approaches perform when applied to a nominally identical scenario, both singularly and across a population. To examine such differences, we have studied the flow in aneurysms located on the internal carotid artery and middle cerebral artery using the commercial solver Ansys CFX and the open-source code HemeLB.

View Article and Find Full Text PDF

CRISPR/Cas9-mediated editing of COQ4 in induced pluripotent stem cells: A model for investigating COQ4-associated human coenzyme Q deficiency.

Stem Cell Res

September 2025

Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf 40225, Germany. Electronic address:

Pathogenic variants in the gene COQ4 cause primary coenzyme Q deficiency, which is associated with symptoms ranging from early epileptic encephalopathy up to adult-onset ataxia-spasticity spectrum disease. We genetically modified commercially available wild-type iPS cells by using a CRISPR/Cas9 approach to create heterozygous and homozygous isogenic cell lines carrying the disease-causing COQ4 variants c.458C > T, p.

View Article and Find Full Text PDF

Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.

Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.

View Article and Find Full Text PDF