Dexamphetamine widens temporal and spatial binding windows in healthy participants.

J Psychiatry Neurosci

From the Department of Psychiatry, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia (Kassim); the Psychopharmacology Unit, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia (Kassim, Lahooti, Keay, Martin-Iverson); the Psychiatry, Graylands Hosp

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The pathophysiology of psychosis is complex, but a better understanding of stimulus binding windows (BWs) could help to improve our knowledge base. Previous studies have shown that dopamine release is associated with psychosis and widened BWs. We can probe BW mechanisms using drugs of specific interest to psychosis. Therefore, we were interested in understanding how manipulation of the dopamine or catecholamine systems affect psychosis and BWs. We aimed to investigate the effect of dexamphetamine, as a dopamine-releasing stimulant, on the BWs in a unimodal illusion: the tactile funneling illusion (TFI).

Methods: We conducted a randomized, double-blind, counterbalanced placebo-controlled crossover study to investigate funnelling and errors of localization. We administered dexamphetamine (0.45 mg/kg) to 46 participants. We manipulated 5 spatial (5-1 cm) and 3 temporal (0, 500 and 750 ms) conditions in the TFI.

Results: We found that dexamphetamine increased funnelling illusion ( = 0.009) and increased the error of localization in a delay-dependent manner ( = 0.03). We also found that dexamphetamine significantly increased the error of localization at 500 ms temporal separation and 4 cm spatial separation ( = 0.009; = 0.01).

Limitations: Although amphetamine-induced models of psychosis are a useful approach to understanding the physiology of psychosis related to dopamine hyperactivity, dexamphetamine is equally effective at releasing noradrenaline and dopamine, and, therefore, we were unable to tease apart the effects of the 2 systems on BWs in our study.

Conclusion: We found that dexamphetamine increases illusory perception on the unimodal TFI in healthy participants, which suggests that dopamine or other catecholamines have a role in increasing tactile spatial and temporal BWs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019325PMC
http://dx.doi.org/10.1503/jpn.220149DOI Listing

Publication Analysis

Top Keywords

binding windows
8
healthy participants
8
dexamphetamine increased
8
increased error
8
error localization
8
dexamphetamine
7
psychosis
6
bws
6
dopamine
5
dexamphetamine widens
4

Similar Publications

A solid-state battery capable of 180 C superfast charging and 100% energy retention at -30 °C.

Proc Natl Acad Sci U S A

September 2025

Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.

Solid-state electrolytes (SSEs) are being extensively researched as replacements for liquid electrolytes in future batteries. Despite significant advancements, there are still challenges in using SSEs, particularly in extreme conditions. This study presents a hydrated metal-organic ionic cocrystal (HMIC) solid-state ion conductor with a solvent-assisted ion transport mechanism suitable for extreme operating conditions.

View Article and Find Full Text PDF

The length of actin filaments is regulated by the combined action of hundreds of actin-binding proteins. While the roles of individual proteins are well understood, how they combine to regulate actin dynamics in vivo remains unclear. Recent advances in microscopy have enabled precise, high-throughput measurements of filament lengths over time.

View Article and Find Full Text PDF

Introduction: Targeted infection imaging is crucial for accurate diagnosis in postpartum women. This project uses 99mTc-labeled cefixime to develop a radiopharmaceutical for detecting, distinguishing, and treating infections and abscesses in women.

Method: Technetium (TcO4-) chelated with cefixime, reduced by stannous chloride, confirmed via thin-layer chromatography.

View Article and Find Full Text PDF

Targeted delivery of IFN-α-anti-GPC3 fusion protein via mRNA-LNP platform elicits potent anti-tumor immunity in hepatocellular carcinoma.

Drug Deliv Transl Res

September 2025

Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou City, Henan Province, 450000, China.

This study aimed to utilize the mRNA-lipid nanoparticle (mRNA-LNP) platform to achieve in situ hepatic expression of an interferon-α (IFN-α)/anti-glypican-3 (anti-GPC3) fusion protein (GPA01), enhancing IFN-α targeting and antitumor activity to provide a precision therapy strategy for GPC3-positive hepatocellular carcinoma (HCC). mRNA encoding a GPC-3/IFN-α bispecific fusion protein was designed and synthesized, encapsulated in lipid nanoparticles, and transfected into HCC cell lines (HepG2) for in vitro characterization of protein expression, binding activity, and gene induction. Orthotopic HCC models (HepG2-luc) and subcutaneous tumor model (Hepa 1-6/hGPC3-hi) were established in mice to evaluate tumor growth, survival, and immune cell infiltration following treatment with mRNA-LNP or control agents.

View Article and Find Full Text PDF

Purpose: While PSMA-targeted radioligand therapy (RLT) has shown remarkable efficacy for treating end-stage prostate cancer, the α-emitting RLT often results in severe salivary gland toxicity, limiting its use. Various strategies to mitigate this side effect have been attempted with limited success. Accordingly, this study introduced a new PSMA-targeting ligand with more favorable binding characteristics than the existing ligands.

View Article and Find Full Text PDF