A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multi-Scale Feature Fusion Network for Low-Dose CT Denoising. | LitMetric

Multi-Scale Feature Fusion Network for Low-Dose CT Denoising.

J Digit Imaging

School of Information and Communication Engineering, North University of China, No.3, College Road, 030051, Taiyuan, Shanxi Province, China.

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Computed tomography (CT) is an imaging technique extensively used in medical treatment, but too much radiation dose in a CT scan will cause harm to the human body. Decreasing the dose of radiation will result in increased noise and artifacts in the reconstructed image, blurring the internal tissue and edge details. To get high-quality CT images, we present a multi-scale feature fusion network (MSFLNet) for low-dose CT (LDCT) denoising. In our MSFLNet, we combined multiple feature extraction modules, effective noise reduction modules, and fusion modules constructed using the attention mechanism to construct a horizontally connected multi-scale structure as the overall architecture of the network, which is used to construct different levels of feature maps at all scales. We innovatively define a composite loss function composed of pixel-level loss based on MS-SSIM-L1 and edge-based edge loss for LDCT denoising. In short, our approach learns a rich set of features that combine contextual information from multiple scales while maintaining the spatial details of denoised CT images. Our laboratory results indicate that compared with the existing methods, the peak signal-to-noise ratio (PSNR) value of CT images of the AAPM dataset processed by the new model is 33.6490, and the structural similarity (SSIM) value is 0.9174, which also achieves good results on the Piglet dataset with different doses. The results also show that the method removes noise and artifacts while effectively preserving CT images' architecture and grain information.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406773PMC
http://dx.doi.org/10.1007/s10278-023-00805-0DOI Listing

Publication Analysis

Top Keywords

multi-scale feature
8
feature fusion
8
fusion network
8
noise artifacts
8
ldct denoising
8
network low-dose
4
low-dose denoising
4
denoising computed
4
computed tomography
4
tomography imaging
4

Similar Publications