Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

NSCLC (non-small-cell lung cancer) is an aggressive form of lung cancer and accompanies high morbidity and mortality. This study investigated the function and associated mechanism of MMP10 during radiotherapy of NSCLC. MMP10 expression in patients and their overall survival rate were assessed through GEPIA. Protein expression was tested by western blotting. Radioresistance was detected by apoptosis and clonogenic assay. The extent of DNA damage and repair was revealed by the comet test and H2AX foci test. High MMP10 levels in specimens of lung adenocarcinoma were related to poor patient outcomes. Clonogenic and apoptosis assays revealed that MMP10 knockdown in A549 cells initiated radiosensitization. Furthermore, MMP10 siRNA increased damage to the DNA in NSCLC cells, while MMP10 was observed to participate in DNA damage repair post-ionizing radiation. Thus, after irradiation, MMP10 plays an essential role in NSCLC through the repair pathway of DNA damage; regulating MMP10 for NSCLC radiosensitivity might have potential treatment implications in radiotherapy of NSCLC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10005878PMC
http://dx.doi.org/10.1155/2023/5636852DOI Listing

Publication Analysis

Top Keywords

dna damage
16
lung cancer
12
damage repair
12
mmp10
9
non-small-cell lung
8
repair pathway
8
radiotherapy nsclc
8
nsclc
6
dna
5
damage
5

Similar Publications

Hematopoietic malignancies (HM) represent the most common form of pediatric cancer with lymphoid malignancies being the predominant subtype in kids. The majority of lymphoid malignancies are proposed to occur sporadically with environmental, infectious and inflammatory triggers impacting oncogenesis in ways that are not yet fully understood. With the increased adoption of germline genetic testing in children with cancer, genetic predisposition to lymphoid malignancies is now recognized as an important aspect of clinical care and research.

View Article and Find Full Text PDF

Neural tumors represent diverse malignancies with distinct molecular profiles and present particular challenges due to the blood-brain barrier, heterogeneous molecular etiology including epigenetic dysregulation, and the affected organ's critical nature. KCC-07, a selective and blood-brain barrier penetrable MBD2 (methyl CpG binding domain protein 2) inhibitor, can suppress tumor development by inducing p53 signaling, proven only in medulloblastoma. Here we demonstrate KCC-07 treatment's application to other neural tumors.

View Article and Find Full Text PDF

The immune system uses a variety of DNA sensors, including endo-lysosomal Toll-like receptors 9 (TLR9) and cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These sensors activate immune responses by inducing the production of a variety of cytokines, including type I interferons (IFN). Activation of cGAS requires DNA-cGAS interaction.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a lethal brain tumor with limited therapeutic options. Temozolomide (TMZ), a standard-of-care chemotherapeutic agent, exerts its cytotoxicity by alkylating DNA, which triggers a DNA damage response and depletes ATP and NAD. However, TMZ also releases the byproduct 4-amino-5-imidazole carboxamide (AIC), which is believed to be a benign metabolite.

View Article and Find Full Text PDF

Circ_IGF2BP1/miR-885-3p/TK1 axis regulates the malignant phenotype and chemotherapeutic resistance of lung adenocarcinoma cells via DNA damage and apoptosis.

Int J Biol Macromol

September 2025

Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China; The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China. Electronic address: kexixian@z

Chemotherapy resistance in lung adenocarcinoma (LUAD) limits clinical efficacy. In this study, we first established circ_IGF2BP1 knockdown models in LUAD cells (A549 and H1299). Using dual-luciferase reporter assays, functional analyses, and miR-885-3p rescue experiments, we demonstrated that circ_IGF2BP1 promotes LUAD cell proliferation, migration, and invasion by directly targeting miR-885-3p.

View Article and Find Full Text PDF