98%
921
2 minutes
20
Over the last years, the predictive power of supervised machine learning (ML) has undergone impressive advances, achieving the status of state of the art and super-human level in some applications. However, the employment rate of ML models in real-life applications is much slower than one would expect. One of the downsides of using ML solution-based technologies is the lack of user trust in the produced model, which is related to the black-box nature of these models. To leverage the application of ML models, the generated predictions should be easy to interpret while maintaining a high accuracy. In this context, we develop the Neural Local Smoother (NLS), a neural network architecture that yields accurate predictions with easy-to-obtain explanations. The key idea of NLS is to add a smooth local linear layer to a standard network. We show experiments that indicate that NLS leads to a predictive power that is comparable to state-of-the-art machine learning models, but that at the same time is easier to interpret.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2023.02.043 | DOI Listing |
PLoS One
September 2025
Charles Sturt University, Albury-Wodonga, New South Wales, Australia.
Effectively motivating public action on climate change remains a central challenge for science communicators. This study investigated how message and messenger attributes shape viewers' motivation to act on climate change, and whether these effects vary as a function of political orientation. Using a policy-capturing design, 581 U.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Computer Science, Osun State University, Osogbo, Nigeria.
Probabilistic Random Forest is an extension of the traditional Random Forest machine learning algorithm that is one of the frequently used machine learning algorithms employed for species distribution modeling. However, with the use of complex dataset for predicting the presence or absence of the species, It is essential that feature extraction is important to generate optimal prediction that can affect the model accuracy and AUC score of the model simulation. In this paper, we integrated the Genetic Algorithm Optimization technique, which is popular for its excellent feature extraction technique, to enhance the predictive performance of the PRF Model.
View Article and Find Full Text PDFInt J Surg
September 2025
Department of Human Structure and Repair, Ghent University Faculty of Medicine, Belgium.
Background: Staging laparoscopy (SL) is an essential procedure for peritoneal metastasis (PM) detection. Although surgeons are expected to differentiate between benign and malignant lesions intraoperatively, this task remains difficult and error-prone. The aim of this study was to develop a novel multimodal machine learning (MML) model to differentiate PM from benign lesions by integrating morphologic characteristics with intraoperative SL images.
View Article and Find Full Text PDFmBio
September 2025
School of Biological Sciences, University of Auckland, Auckland, New Zealand.
The rotation of the bacterial flagellum is powered by the MotAB stator complex, which converts ion flux into torque. Despite its central role in flagellar function, the evolutionary origin and structural diversity of this system remain poorly understood. Here, we present the first comprehensive phylogenetic and structural characterization of MotAB and its closest non-flagellar homologs.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Materials Genome Institute, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
Magnetic two-dimensional van der Waals (vdWs) materials hold potential applications in low-power and high-speed spintronic devices due to their degrees of freedom such as valley and spin. In this Letter, we propose a mechanism that uses stacking engineering to control valley polarization (VP), ferroelectricity, layer polarization (LP), and magnetism in vdWs bilayers. Through first-principles calculations, we predict that the T-VSI monolayer is a magnetic semiconductor with a sizable VP.
View Article and Find Full Text PDF