A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Interfacial Engineering of NaV(PO)OF Cathode for Low-Temperature (-40 °C) Sodium-Ion Batteries. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

NaV(PO)OF (NVPOF) is considered a promising cathode material for sodium-ion batteries (SIBs) on account of its attractive electrochemical properties such as high theoretical capacity, stable structure, and high working platform. Nevertheless, the inevitable interface problems like sluggish interfacial electrochemical reaction kinetics and poor interfacial ion storage capacity seriously hinder its application. Construction of chemical bonding is a highly effective way to solve interface problems. Herein, NVPOF with interfacial V-F-C bonding (CB-NVPOF) is developed. The CB-NVPOF cathode exhibits high rate capability (65 mA h g at 40C) and long-term cycling stability (a capacity retention of 77% after 2000 cycles at 20C). Furthermore, it shows impressive electrochemical performance at temperatures as low as -40 °C, delivering a capacity of 56 mA h g at 10C and a capacity retention of ∼80% after 500 cycles at 2C. The interfacial V-F-C bond engineering significantly advances the electronic conductivity, Na diffusion, as well as interface compatibility at -40 °C. This study provides a novel idea for improving the electrochemical performance of NVPOF-based cathodes for SIBs aiming for low-temperature applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c22547DOI Listing

Publication Analysis

Top Keywords

-40 °c
12
sodium-ion batteries
8
interface problems
8
interfacial v-f-c
8
capacity retention
8
electrochemical performance
8
interfacial
5
capacity
5
interfacial engineering
4
engineering navpoof
4

Similar Publications