98%
921
2 minutes
20
Multiple myeloma is an incurable plasma cell malignancy with only a 53% 5-year survival rate. There is a critical need to find new multiple myeloma vulnerabilities and therapeutic avenues. Herein, we identified and explored a novel multiple myeloma target: the fatty acid binding protein (FABP) family. In our work, myeloma cells were treated with FABP inhibitors (BMS3094013 and SBFI-26) and examined in vivo and in vitro for cell cycle state, proliferation, apoptosis, mitochondrial membrane potential, cellular metabolism (oxygen consumption rates and fatty acid oxidation), and DNA methylation properties. Myeloma cell responses to BMS309403, SBFI-26, or both, were also assessed with RNA sequencing (RNA-Seq) and proteomic analysis, and confirmed with western blotting and qRT-PCR. Myeloma cell dependency on FABPs was assessed using the Cancer Dependency Map (DepMap). Finally, MM patient datasets (CoMMpass and GEO) were mined for expression correlations with clinical outcomes. We found that myeloma cells treated with FABPi or with knockout (generated via CRISPR/Cas9 editing) exhibited diminished proliferation, increased apoptosis, and metabolic changes in vitro. FABPi had mixed results in vivo, in two pre-clinical MM mouse models, suggesting optimization of in vivo delivery, dosing, or type of FABP inhibitors will be needed before clinical applicability. FABPi negatively impacted mitochondrial respiration and reduced expression of MYC and other key signaling pathways in MM cells in vitro. Clinical data demonstrated worse overall and progression-free survival in patients with high expression in tumor cells. Overall, this study establishes the FABP family as a potentially new target in multiple myeloma. In MM cells, FABPs have a multitude of actions and cellular roles that result in the support of myeloma progression. Further research into the FABP family in MM is warrented, especially into the effective translation of targeting these in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995119 | PMC |
http://dx.doi.org/10.7554/eLife.81184 | DOI Listing |
Anticancer Drugs
September 2025
Department of Blood and Marrow Transplantation, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer.
Bortezomib resistance in multiple myeloma (MM) is a significant clinical challenge that limits the long-term effectiveness. Currently, there is a lack of reliable biomarkers to predict bortezomib resistance. Previous studies reported that several proteins regulate bortezomib resistance through targeting ubiquitin-proteasome pathways, including heat shock protein family A member 9 (HSPA9), dickkopf Wnt signaling pathway inhibitor 1 (DKK1), proteasome 26S subunit non-ATPase 14 (PSMD14), and tripartite motif containing 21 (TRIM21).
View Article and Find Full Text PDFBMB Rep
September 2025
Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Core Research Center, Inje University, Busan 47392, Korea; Department of Health Science and Technology, College of Medicine, Inje University, Busan 47392, K
Patients with multiple myeloma develop resistance to thalidomide during therapy, and the mechanisms to counteract thalidomide resistance remain elusive. Here, we explored the interaction between cereblon and mitochondrial function to mitigate thalidomide resistance in multiple myeloma. Measurements of cell viability, ATP production, mitochondrial membrane potential, mitochondrial ROS, and protein expression via western blotting were conducted in vitro using KSM20 and KMS26 cells to assess the impact of thalidomide on multiple myeloma.
View Article and Find Full Text PDFEur J Haematol
September 2025
Department of Translational Biomedicine and Neuroscience, University of Bari, Bari, Italy.
In 1994, Vacca, Ribatti, and colleagues demonstrated for the first time that bone marrow microvascular density was significantly increased in multiple myeloma (MM) compared to monoclonal gammopathies of undetermined significance (MGUS) and moreover in active vs. non-active forms. Starting from 1994, the aim of this review article is to summarize the most important acquisitions in the literature concerning the role of angiogenesis in MM progression and the possibility to use anti-angiogenic drugs in its treatment.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
September 2025
Department of Hematology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China. Electronic address:
Multiple myeloma (MM) is a malignant disease in which clonal plasma cells proliferate abnormally. In patients with MM, the number and function of NK cells are suppressed, resulting in reduced immune surveillance and clearance of myeloma cells. Restoring or enhancing the killing effect of NK cells on myeloma cells is an important strategy for MM immunotherapy.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
September 2025
Department of Personalized Medicine and Rare Diseases, Medfuture Institute for Biomedical Research - Department of Hematology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Hematology, Ion Chiricuta Cancer Center, Cluj Napoca, Romania. Electronic address:
Plasma cell myeloma (multiple myeloma) is a blood cancer characterized by the clonal proliferation of plasma cells in the bone marrow. Treatment strategies evolve year by year, new drugs getting Food and Drug Administration (FDA)-approved each year. Chimeric antigen receptor (CAR) therapies are an advanced form of immunotherapy that engineer T cells to recognize and destroy cancer cells.
View Article and Find Full Text PDF