98%
921
2 minutes
20
There are considerable interests in automatic stroke lesion segmentation on magnetic resonance (MR) images in the medical imaging field, as stroke is an important cerebrovascular disease. Although deep learning-based models have been proposed for this task, generalizing these models to unseen sites is difficult due to not only the large inter-site discrepancy among different scanners, imaging protocols, and populations, but also the variations in stroke lesion shape, size, and location. To tackle this issue, we introduce a self-adaptive normalization network, termed SAN-Net, to achieve adaptive generalization on unseen sites for stroke lesion segmentation. Motivated by traditional z-score normalization and dynamic network, we devise a masked adaptive instance normalization (MAIN) to minimize inter-site discrepancies, which standardizes input MR images from different sites into a site-unrelated style by dynamically learning affine parameters from the input; i.e., MAIN can affinely transform the intensity values. Then, we leverage a gradient reversal layer to force the U-net encoder to learn site-invariant representation with a site classifier, which further improves the model generalization in conjunction with MAIN. Finally, inspired by the "pseudosymmetry" of the human brain, we introduce a simple yet effective data augmentation technique, termed symmetry-inspired data augmentation (SIDA), that can be embedded within SAN-Net to double the sample size while halving memory consumption. Experimental results on the benchmark Anatomical Tracings of Lesions After Stroke (ATLAS) v1.2 dataset, which includes MR images from 9 different sites, demonstrate that under the "leave-one-site-out" setting, the proposed SAN-Net outperforms recently published methods in terms of quantitative metrics and qualitative comparisons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2023.106717 | DOI Listing |
Stroke
September 2025
Brain Language Laboratory, Freie Universität Berlin, Germany (A.-T.P.J., M.R.O., A.S., F.P.).
Background: Intensive language-action therapy treats language deficits and depressive symptoms in chronic poststroke aphasia, yet the underlying neural mechanisms remain underexplored. Long-range temporal correlations (LRTCs) in blood oxygenation level-dependent signals indicate persistence in brain activity patterns and may relate to learning and levels of depression. This observational study investigates blood oxygenation level-dependent LRTC changes alongside therapy-induced language and mood improvements in perisylvian and domain-general brain areas.
View Article and Find Full Text PDFStroke
September 2025
Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China (H.Z., K.H., Q.G.).
Background: Poststroke cognitive impairment (PSCI) affects 30% to 50% of stroke survivors, severely impacting functional outcomes and quality of life. This study uses functional near-infrared spectroscopy (fNIRS) to assess task-evoked brain activation and its potential for stratifying the severity in patients with PSCI.
Method: A cross-sectional study was conducted at Nanchong Central Hospital between June 2023 and April 2024.
Front Neurol
August 2025
Division of Neurology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
Introduction: A subset of patients with homonymous hemianopia can consciously perceive motion within their blind visual fields-a phenomenon known as the Riddoch phenomenon. However, the factors predicting this residual motion perception remain poorly understood. This study aims to identify clinical and neuroanatomical predictors of the Riddoch phenomenon in stroke patients.
View Article and Find Full Text PDFRev Cardiovasc Med
August 2025
Department of Cardiology, University Hospitals of Leicester NHS Trust, Glenfield Hospital, LE3 9QP Leicester, UK.
Adult congenital heart disease (ACHD) constitutes a heterogeneous and expanding patient cohort with distinctive diagnostic and management challenges. Conventional detection methods are ineffective at reflecting lesion heterogeneity and the variability in risk profiles. Artificial intelligence (AI), including machine learning (ML) and deep learning (DL) models, has revolutionized the potential for improving diagnosis, risk stratification, and personalized care across the ACHD spectrum.
View Article and Find Full Text PDFScand J Surg
September 2025
Department of Surgery, Sahlgrenska Hospital, Gothenburg, Sweden.
Background: In recent years, as new strategies have been developed, there has been a reduction of invasive interventions for prevention or treatment of ischaemic cerebral events. Furthermore, surgical treatment has been centralized to major vascular centra.
Aim: This study analyzed registered malpractice claims to the insurance during two decades.