Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Low-molecular-weight organic acids (LMWOAs) prevalent in soil environments may influence the transport, fate, and orientation of microplastics (MPs) by mediating mineral interfaces. Nevertheless, few studies have reported their impact on the environmental behavior of MPs in soil. Here, the functional regulation of oxalic at mineral interfaces and its stabilizing mechanism for MPs were investigated. The results showed that oxalic drove MPs stability onto minerals and new adsorption pathways, which are dependent on the bifunctionality of minerals induced by oxalic acid. Besides, our findings reveal that in the absence of oxalic acid, the stability of hydrophilic and hydrophobic MPs on kaolinite (KL) mainly displays hydrophobic dispersion, whereas electrostatic interaction is dominant on ferric sesquioxide (FS). Moreover, the amide functional groups ([NHCO]) of PA-MPs may have positive feedback on the stability of MPs. In the presence of oxalic acid (2-100 mM), the MPs stability efficiency and property onto minerals were integrally increased in batch studies. Our results demonstrate the oxalic acid-activated interfacial interaction of minerals via dissolution coupled O-functional groups. Oxalic-induced functionality at mineral interfaces further activates electrostatic interaction, cation bridge effect, hydrogen forces, ligand exchange and hydrophobicity. These findings provide new insights into the regulating mechanisms of oxalic-activated mineral interfacial properties for environmental behavior of emerging pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.162563DOI Listing

Publication Analysis

Top Keywords

mineral interfaces
12
oxalic acid
12
dissolution coupled
8
environmental behavior
8
mps stability
8
electrostatic interaction
8
mps
7
oxalic
6
mineral
5
oxalic-activated minerals
4

Similar Publications

Facet-dependent Heterogeneous Fenton Reaction Mechanisms on Hematite Nanoparticles for (Photo)catalytic Degradation of Organic Dyes.

Adv Sci (Weinh)

September 2025

Physical & Computational Science Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA.

Although heterogeneous photo-Fenton reactions on nanoparticulate iron oxides effectively degrade organic pollutants, the underlying surface mechanisms remain debated. Here, we demonstrate how these pathways are modulated by specific hematite crystal facets. To investigate the influence of particle surface structure, methylene blue (MB) adsorption and photodegradation kinetics are examined using facet-engineered hematite nanoparticles with distinct exposed facets.

View Article and Find Full Text PDF

Promotion of Biomimetic Mineralization Preinfiltration of Mineral Precursors.

ACS Appl Mater Interfaces

September 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.

Intrafibrillar mineralization plays an important role in dentin repair. Current research on intrafibrillar mineralization primarily focuses on the precise positioning of mineral precursors within collagen and the reduction of mineralization time. Inspired by the multifunctionality of noncollagenous proteins (NCPs), we developed a dual-analogue system, 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) followed by 3-(3,4-dihydroxyphenyl)-l-alanine (l-DOPA)-stabilized amorphous calcium phosphate (M + LA), which integrated a nucleation inhibitor l-DOPA and inducer 10-MDP.

View Article and Find Full Text PDF

Quartz is among the most abundant minerals on Earth, but its surface chemistry under varying pH conditions remains not fully understood. In particular, the interplay between pH, amphoteric behavior, and water adsorption properties has been the subject of a long-standing debate. This study presents a comprehensive, multitechnique investigation into the pH-dependent interfacial chemistry of quartz.

View Article and Find Full Text PDF

Double Nanofoaming Enhanced Interfacial Polymerization toward Ultra-High-Performance Nanofiltration Membranes.

Environ Sci Technol

September 2025

Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China.

Polyamide (PA) nanofiltration (NF) membranes represent a promising approach to safe drinking water production. Yet, selective removal of contaminants while retaining essential minerals remains a critical challenge for cost-effective water treatment processes. Here, we employed ammonia bicarbonate (AB) as an economical additive to modify interfacial polymerization (IP) for developing high-performance NF membranes suitable for drinking water applications.

View Article and Find Full Text PDF

Interfacial Self-Assembly of Sugars at Nanoscale Membranes Leads to Micron-Scale, Spectroscopically Ice-Like Chiral Suprastructures of Water.

J Am Chem Soc

September 2025

Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.

Life requires chemical chiral specificity. The emergence of enantioselectivity is unknown but has been linked to diverse scenarios for the origin of life, ranging from an extraterrestrial origin to polarization-induced effects, and magnetic field-induced mineral templating. These scenarios require an originating mechanism and a subsequent enhancement step, leading to widespread chiral specificity.

View Article and Find Full Text PDF