Wireless-controlled cubic neural stimulator for free-moving animals.

R Soc Open Sci

School of Intelligent Manufacturing, Huanghuai University, Zhumadian 463000, People's Republic of China.

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An electrical stimulator transmitting information into selected neural circuits is a promising approach for neural prostheses or animal robots. However, traditional stimulators are based on rigid printed circuit board (PCB) technology; technological limitations hindered the development of stimulators, especially for experiments involving free-moving subjects. Here we described a small (1.6 × 1.8 × 1.6 cm), lightweight (4 g, including a 100 mA h lithium battery) and multi-channel (eight unipolar or four bipolar biphasic channels) cubic wireless electrical stimulator exploiting flexible PCB technology. In comparison with the traditional stimulator, an appliance of both flexible PCB and cube structure makes it smaller and lighter, and enhances its stability. Stimulation sequences can be constructed with 100 selectable current levels, 40 selectable frequency levels and 20 selectable pulse-width-ratio levels. Moreover, the distance of wireless communication can reach approximately 150 m. Both and results have demonstrated functionality of the stimulator. The feasibility of remote pigeon's navigation using the proposed stimulator was successfully verified.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974298PMC
http://dx.doi.org/10.1098/rsos.221116DOI Listing

Publication Analysis

Top Keywords

electrical stimulator
8
pcb technology
8
flexible pcb
8
levels selectable
8
stimulator
6
wireless-controlled cubic
4
cubic neural
4
neural stimulator
4
stimulator free-moving
4
free-moving animals
4

Similar Publications

Background: Charcot foot is a debilitating complication of peripheral neuropathy and is primarily associated with diabetes, leading to structural damage, ulceration, and osteomyelitis. Pulsed electromagnetic field (PEMF) therapy is a promising treatment modality for wound healing and bone metabolism.

Objective: To evaluate the efficacy of PEMF therapy in promoting bone growth and ulcer healing in patients with Charcot foot ulcers.

View Article and Find Full Text PDF

Correlated spiking has been widely found in large population of neurons and been linked to neural coding. Transcranial alternating current stimulation (tACS) is a promising non-invasive brain stimulation technique that can modulate the spiking activity of neurons. Despite its growing application, the tACS effects on the temporal correlation between spike trains are still not fully understood.

View Article and Find Full Text PDF

Background: Electronic nicotine delivery systems (ENDS) utilize "E-liquids" in order to generate "E-vapor", an inhalable aerosolized mixture containing nicotine and flavors. Flavored ENDS are very popular among teens who vape, however, the possible cardiac electrophysiological harm of inhalation exposure to flavored ENDS are not fully understood.

Objective: To test if inhalation exposure to flavoring carbonyls in e-liquids compromises mitochondrial integrity, increases oxidative stress, and leads to cardiac electrophysiological toxicity.

View Article and Find Full Text PDF

Biophysically Constrained Dynamical Modelling of the Brain Using Multimodal Magnetic Resonance Imaging.

Brain Res Bull

September 2025

Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA; Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA.

We propose a Biophysically Restrained Analog Integrated Neural Network (BRAINN), an analog electrical network that models the dynamics of brain function. The network interconnects analog electrical circuits that simulate two tightly coupled brain processes: (1) propagation of an action potential, and (2) regional cerebral blood flow in response to the metabolic demands of signal propagation. These two processes are modeled by two branches of an electrical circuit comprising a resistor, a capacitor, and an inductor.

View Article and Find Full Text PDF

Introduction: Traditional hydrogels with poor mechanical properties and lack of biological activities severely limit their application in wound therapy. Designing multifunctional hydrogels for monitoring and accelerating wound healing remains imperative.

Objectives: The aim of this study is to develop a multifunctional antifreeze ionic conductive Gel-TBA@organohydrogel with antibacterial, anti-inflammatory and antioxidant properties for monitoring and wound treatment.

View Article and Find Full Text PDF