Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Skeletal muscle is a complex heterogeneous tissue and characterizing its cellular heterogeneity and transcriptional and epigenetic signatures are important for understanding the details of its ontogeny. In our study, we applied scRNA-seq and scATAC-seq to investigate the cell types, molecular features, transcriptional and epigenetic regulation, and patterns of developing bovine skeletal muscle from gestational, lactational and adult stages. Detailed molecular analyses were used to dissect cellular heterogeneity, and we deduced the differentiation trajectory of myogenic cells and uncovered their dynamic gene expression profiles. SCENIC analysis was performed to demonstrate key regulons during cell fate decisions. We explored the future expression states of these heterogeneous cells by RNA velocity analysis and found extensive networks of intercellular communication using the toolkit CellChat. Moreover, the transcriptomic and chromatin accessibility modalities were confirmed to be highly concordant, and integrative analysis of chromatin accessibility and gene expression revealed key transcriptional regulators acting during myogenesis. In bovine skeletal muscle, by scRNA-seq and scATAC-seq analysis, different cell types such as adipocytes, endothelial cells, fibroblasts, lymphocytes, monocytes, pericyte cells and eight skeletal myogenic subpopulations were identified at the three developmental stages. The pseudotime trajectory exhibited a distinct sequential ordering for these myogenic subpopulations and eight distinct gene clusters were observed according to their expression pattern. Moreover, specifically expressed TFs (such as MSC, MYF5, MYOD1, FOXP3, ESRRA, BACH1, SIX2 and ATF4) associated with muscle development were predicted, and likely future transcriptional states of individual cells and the developmental dynamics of differentiation among neighbouring cells were predicted. CellChat analysis on the scRNA-seq data set then classified many ligand-receptor pairs among these cell clusters, which were further categorized into significant signalling pathways, including BMP, IGF, WNT, MSTN, ANGPTL, TGFB, TNF, VEGF and FGF. Finally, scRNA-seq and scATAC-seq results were successfully integrated to reveal a series of specifically expressed TFs that are likely to be candidates for the promotion of cell fate transition during bovine skeletal muscle development. Overall, our results outline a single-cell dynamic chromatin/transcriptional landscape for normal bovine skeletal muscle development; these provide an important resource for understanding the structure and function of mammalian skeletal muscle, which will promote research into its biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472525PMC
http://dx.doi.org/10.1111/cpr.13430DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
28
bovine skeletal
20
muscle development
16
scrna-seq scatac-seq
12
skeletal
8
muscle
8
cellular heterogeneity
8
transcriptional epigenetic
8
cell types
8
gene expression
8

Similar Publications

Background: This study aimed to investigate the gender-specific associations of skeletal muscle mass and fat mass with non-alcoholic fatty liver disease (NAFLD) and NAFLD-related liver fibrosis in two population-based studies.

Methods: Analyses were based on data from the MEGA (n = 238) and the MEIA study (n = 594) conducted between 2018 and 2023 in Augsburg, Germany. Bioelectrical impedance analysis was used to evaluate relative skeletal muscle mass (rSM) and SM index (SMI) as well as relative fat mass (rFM) and FM index (FMI); furthermore, the fat-to-muscle ratio was built.

View Article and Find Full Text PDF

X-Linked Hypophosphatemia: Role of Fibroblast Growth Factor 23 on Human Skeletal Muscle-Derived Cells.

Calcif Tissue Int

September 2025

FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141, Florence, Italy.

X-linked hypophosphatemia (XLH) is a rare and progressive disease, due to inactivating mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. These pathogenic variants result in elevated circulating levels of fibroblast growth factor 23 (FGF23), responsible for the main clinical manifestations of XLH, such as hypophosphatemia, skeletal deformities, and mineralization defects. However, XLH also involves muscular disorders (muscle weakness, pain, reduced muscle density, peak strength, and power).

View Article and Find Full Text PDF

Introduction: medial patellofemoral ligament (MPFL) reconstruction using an autologous quadriceps tendon graft to treat patellofemoral dislocation in the pediatric population is a surgical alternative that may offer advantages compared to other types of grafts. We assessed clinical and functional outcomes, rate of return to sport, and complications in a cohort of pediatric patients.

Material And Methods: retrospective and descriptive cohort study.

View Article and Find Full Text PDF

Comment on "Low skeletal muscle mass and not systemic inflammation is associated with complications after free forearm flap reconstruction in oral cancer patients".

Oral Oncol

September 2025

Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India. Electronic address:

View Article and Find Full Text PDF

Electrical pulse generator for electroporation induction in myocytes: Compared effects on skeletal and cardiac cells.

Med Eng Phys

October 2025

Departament of Electronics and Biomedical Engineering, School of Electrical and Computer Engineering (DEEB/FEEC), University of Campinas (UNICAMP), Campinas, SP, Brazil; National Laboratory for Study of Cell Calcium (LabNECC), Center for Biomedical Engineering (CEB), UNICAMP, Campinas, SP, Brazil.

High-intensity, external electric fields (HIEF) have been used in research and therapy for abnormal generation/propagation of the cardiac electrical activity (e.g., defibrillation), and for promoting access of membrane-impermeant molecules into the cytosol through electropores.

View Article and Find Full Text PDF