Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bipolar direct electrical stimulation (DES) of an awake patient is the reference technique for identifying brain structures to achieve maximal safe tumor resection. Unfortunately, DES cannot be performed in all cases. Alternative surgical tools are, therefore, needed to aid identification of subcortical connectivity during brain tumor removal. In this pilot study, we sought to (i) evaluate the combined use of evoked potential (EP) and tractography for identification of white matter (WM) tracts under the functional control of DES, and (ii) provide clues to the electrophysiological effects of bipolar stimulation on neural pathways. We included 12 patients (mean age of 38.4 years) who had had a dMRI-based tractography and a functional brain mapping under awake craniotomy for brain tumor removal. Electrophysiological recordings of subcortical evoked potentials (SCEPs) were acquired during bipolar low frequency (2 Hz) stimulation of the WM functional sites identified during brain mapping. SCEPs were successfully triggered in 11 out of 12 patients. The median length of the stimulated fibers was 43.24 ± 19.55 mm, belonging to tracts of median lengths of 89.84 ± 24.65 mm. The electrophysiological (delay, amplitude, and speed of propagation) and structural (number and lengths of streamlines, and mean fractional anisotropy) measures were correlated. In our experimental conditions, SCEPs were essentially limited to a subpart of the bundles, suggesting a selectivity of action of the DES on the brain networks. Correlations between functional, structural, and electrophysiological measures portend the combined use of EPs and tractography as a potential intraoperative tool to achieve maximum safe resection in brain tumor surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00429-023-02623-0DOI Listing

Publication Analysis

Top Keywords

brain tumor
16
subcortical connectivity
8
brain
8
connectivity brain
8
tumor surgery
8
tumor removal
8
brain mapping
8
tumor
5
identifying subcortical
4
surgery multimodal
4

Similar Publications

Background: Meningioma en plaque (MEP) is a rare subtype of meningioma with a carpet-like growth pattern, often causing hyperostosis. Even rarer is the presentation of bilateral MEP posing diagnostic and therapeutic challenges. Management of MEP usually entails early complete resection.

View Article and Find Full Text PDF

Vitamin D3 reduces the viability of cancer cells in vitro and retard the EAC tumors growth in mice.

PLoS One

September 2025

Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST supported center, ICMR collaborating center of excellence - ICMR-CCoE), Department of Biochemistry (DST-FIST supported department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHE

Prior studies from our laboratory have shown that cancer cells exposed to vitamin D3 exhibited reduced proliferation in breast cancer cells due to the upregulation of p53 and downregulation of cyclin-D1. Furthermore, in mice, our group has demonstrated that administration of 125 µg/kg of vitamin D3 retarded the growth of EAC tumors. But, it is unknown whether vitamin D3 exerts similar anti-cancer effects against cell lines representing carcinomas of the liver, colon and rectum, cervix, and brain.

View Article and Find Full Text PDF

Multi-modal brain tumors segmentation is a critical step for diagnosing and monitoring brain-related disease. Many studies have developed models for this task, but two challenges remain, i.e.

View Article and Find Full Text PDF

Preventing Glioblastoma Relapse by Igniting Innate Immunity through Mitochondrial Stress in the Surgical Cavity.

Adv Mater

September 2025

Department of Neurosurgery, Qilu Hospital and Shandong Key Laboratory of Brain Health and Function Remodeling, Institute of Brain and Brain-Inspired Science, Jinan Microecological Biomedicine Shandong Laboratory, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong,

Innate immunity is crucial in orchestrating the brain immune response, however, glioblastoma multiforme (GBM) has evolved sophisticated mechanisms to evade innate immune surveillance, posing significant challenges for current immunotherapies. Here, a therapeutic strategy is reported that aims at reactivating innate immune responses in GBM via targeted induction of mitochondrial stress, thereby enhancing tumor immunogenicity. Specifically, innate immune-stimulating nanoparticles (INSTNA) are developed, encapsulating positively charged iridium-based complexes (Ir-mito) and small interfering RNA against Methylation-Controlled J protein (si-MCJ) to attenuate mitochondrial respiration.

View Article and Find Full Text PDF

The prognosis of glioblastoma multiforme (GBM) remains dismal, despite standard treatment regimens. A key challenge in treating GBM is the persistence of glioma stem cells (GSCs) within the perivascular niche (PVN) - a protective tumor microenvironment (TME) that is often associated with inadequate drug penetration. Current preclinical models do not capture complexity of the human TME, particularly the vasculature and niche-specific interactions that drive GBM progression.

View Article and Find Full Text PDF