98%
921
2 minutes
20
Conventional cancer detection and treatment methodologies are based on surgical, chemical and radiational processes, which are expensive, time consuming and painful. Therefore, great interest has been directed toward developing sensitive, inexpensive and rapid techniques for early cancer detection. Optical biosensors have advantages in terms of high sensitivity and being label free with a compact size. In this review paper, the state of the art of optical biosensors for early cancer detection is presented in detail. The basic idea, sensitivity analysis, advantages and limitations of the optical biosensors are discussed. This includes optical biosensors based on plasmonic waveguides, photonic crystal fibers, slot waveguides and metamaterials. Further, the traditional optical methods, such as the colorimetric technique, optical coherence tomography, surface-enhanced Raman spectroscopy and reflectometric interference spectroscopy, are addressed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953566 | PMC |
http://dx.doi.org/10.3390/biology12020232 | DOI Listing |
JACC Cardiovasc Interv
September 2025
CVPath Institute, Gaithersburg, Maryland, USA; University of Maryland, School of Medicine, Baltimore, Maryland, USA. Electronic address:
Background: Effective modification of heavily calcified coronary lesions is critical for successful percutaneous coronary intervention (PCI). Intravascular lithotripsy (IVL), cutting balloons (CBs), and ultra-high-pressure balloons (UHBs) are used commonly, yet data comparing their effectiveness and safety for calcified lesion modification remain unavailable.
Objectives: The aim of this study was to compare the effects of IVL, a CB, and a UHB on calcified coronary lesions in human cadaveric arteries, focusing on calcium fracture formation and vascular injury.
Med
September 2025
Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, China; Gansu Province Key Laboratory of Biological Therapy and Regenerative Medicine Transformation, Lanzhou, Gansu 730030, China. Electronic address:
Background: Early diagnosis of cholangiocarcinoma (CCA) remains challenging, but liquid biopsy is emerging as a promising detection strategy. Here, we identified a novel bile biomarker for CCA and developed an optic fiber biosensor integrated with digestive endoscopy for real-time diagnosis in vivo.
Methods: A total of 583 subjects and two proteomic analyses were used to screen and validate biomarkers for CCA, and then the corresponding antibodies were generated to construct a surface plasmon resonance (SPR)-based optic fiber biosensor.
ACS Nano
September 2025
State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
Optical imaging offers high sensitivity and specificity for noninvasive cancer detection, but conventional techniques suffer from limited probe accumulation, tissue autofluorescence, and poor depth resolution. Afterglow luminescence overcomes autofluorescence by emitting persistent light after excitation, yet its utility in vivo remains hindered by weak tumor enrichment and two-dimensional readouts lacking spatial context. Here, we report luminescent-magnetic nanoparticles (LM-NPs) coencapsulating luminescent trianthracene (TA) molecules and iron oxide cores within the amphiphilic polymer pluronic-F127.
View Article and Find Full Text PDFVirology
September 2025
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China. Electronic address:
Colloidal gold technology has revolutionized viral diagnostics through its rapid, cost-effective, and user-friendly applications, particularly in point-of-care testing (POCT). This review synthesizes recent advancements, focusing on its role in detecting respiratory viruses, hepatitis viruses, and emerging pathogens. The technology leverages the unique optical and physicochemical properties of gold nanoparticles (AuNPs), including localized surface plasmon resonance (LSPR) and high surface-to-volume ratios, to achieve rapid antigen-antibody recognition with visual readouts within 15 min.
View Article and Find Full Text PDFAnal Chem
September 2025
College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
A series of molecular logic gates with multiple biocomputing capabilities have been successfully fabricated by using four antibiotic residues [tetracycline (TET), chloramphenicol (CHL), kanamycin (KAN), and streptomycin (STR)] as inputs. The lateral flow strip biosensor was utilized to realize the visual and portable sensing of logic events. Four basic logic gates (OR, AND, XOR, and INHIBIT) and three cascade logic circuits (OR-INHIBIT-AND, 3AND-OR, and XOR-INHIBIT-OR-AND) were constructed.
View Article and Find Full Text PDF