98%
921
2 minutes
20
Near-infrared electron acceptors for organic solar cells (OSCs) mostly contain electron-withdrawing 2-(3-oxo-2,3-dihydro-1-inden-1-ylidene)malononitrile (IC) end groups, which can be modified by but limited to phenyl, thienyl, and naphthyl units with halogenated, methyl, and methyloxy substitution. In this work, we employed an imide-containing unit to construct a new IC end group, based on which a series of new electron acceptors were synthesized. The strong electron-deficient nature of imide units enables the new acceptors to show efficient intramolecular charge transfer and hence red-shifted absorption spectra compared to their IC counterparts. These new electron acceptors were applied to OSCs, providing efficiencies of over 17% with a low voltage loss of 0.52 eV. These results demonstrate that the new imide-containing end groups are promising fragments for the construction of near-infrared electron acceptors for high-performance OSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c22972 | DOI Listing |
Biochim Biophys Acta Biomembr
September 2025
Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil. Electronic address:
Three antileishmanial compounds incorporating a butylated hydroxytoluene (BHT) moiety and an acrylate-based Michael acceptor scaffold were rationally designed from the lead structures LQFM064 and LQFM332, which feature a chalcone-derived core. Their activities against Leishmania (L.) amazonensis were evaluated.
View Article and Find Full Text PDFInorg Chem
September 2025
Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemical and Materials Engineering, Qujing Normal University, Qujing 655011, China.
Sequential assembly of donor-acceptor components at the molecular level within a MOF is an effective strategy to achieve efficient electron-hole separation for enhancing the activity of photocatalysts. Meanwhile, the highly efficient and selective functionalization of tetrahydroisoquinoline (THIQ) under mild conditions remains an urgent demand in both the scientific and industrial communities. This work reports a donor-acceptor MOF photocatalyst () constructed by the coordinated assembly of donor and acceptor components, in which a naphthalene unit serves as an electron donor and a perylenediimide unit as an electron acceptor.
View Article and Find Full Text PDFAcc Chem Res
September 2025
Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.
ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea.
The nanoscale environment within the void spaces of metal-organic frameworks (MOFs) can significantly influence the photoredox catalytic activity of encapsulated visible-light photoredox catalysts (PCs). To compare two isostructural PC@In-MOF systems, three cationic Ru(II) polypyridine complexes were successfully encapsulated within the mesoscale channels of the anionic framework of InTATB (HTATB = 4,4',4''--triazine-2,4,6-triyltribenzoic acid), which features a doubly interpenetrated framework structure. This encapsulation yielded three heterogenized visible-light PCs, RuL@InTATB, where L = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), or 2,2'-bipyrazine (bpz).
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti, 85, Bologna 40129, Italy.
Donor-acceptor-donor (D-A-D) thiophene-based compounds, characterized by thiophene as a donor unit and benzothiadiazole (Bz) as an acceptor, represent an emerging class of theranostic agents for imaging and photodynamic therapy. Here, we expand this class of molecules by strategically varying the position of the electron-accepting unit within the oligothiophene (OT) backbone structure, realizing a series of different push-pull architectures (A-D, D-A-D, and D-A). This rational design allows for precise modulation of key photophysical parameters, including absorption and emission spectra, molar absorption coefficient, charge separation, and frontier molecular orbitals.
View Article and Find Full Text PDF