Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Exploring oxygen reduction reaction (ORR) catalysts with superior electrochemical performance and long-term stability is crucial to the development of proton exchange membrane fuel cells (PEMFCs). In this work, graphited carbon with high specific surface area was obtained under relatively low temperature using Ni catalyst, then ordered nanoparticles (NPs) PtNi catalysts attaching to graphited carbon were synthesized via polyol reduction and thermal treatment. Benefiting from graphitized carbon support and appropriate order degree, PtNi/GC-700 NPs catalyst exhibits excellent electrocatalytic ORR performance with specific and mass activities as high as 2.8-fold and 3.7-fold of the commercial Pt/C catalyst, respectively. Besides, the as-prepared PtNi/GC-700 catalyst exhibits superior stability with negligible degradation after 10000 potential cycles, due to its ordered chemical structure. The work described herein highlights the potential of structurally ordered electrocatalysts for efficient and durable fuel cell cathodic catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202300099 | DOI Listing |