Changes of Soil Dissolved Organic Matter and Its Relationship with Microbial Community along the Hailuogou Glacier Forefield Chronosequence.

Environ Sci Technol

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glacier-retreated areas are ideal areas to study soil biogeochemical processes during vegetation succession, because of the limited effect of other environmental and climatic factors. In this study, the changes of soil dissolved organic matter (DOM) and its relationship with microbial communities along the Hailuogou Glacier forefield chronosequence were investigated. Both microbial diversity and DOM molecular chemodiversity recovered rapidly at the initial stage, indicating the pioneering role of microorganisms in soil formation and development. The chemical stability of soil organic matter enhanced with vegetation succession due to the retaining of compounds with high oxidation state and aromaticity. The molecular composition of DOM affected microbial communities, while microorganisms tended to utilize labile components to form refractory components. This complex relationship network between microorganisms and DOM components played an important role in the development of soil organic matter as well as the formation of stable soil carbon pool in glacier-retreated areas.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.2c08855DOI Listing

Publication Analysis

Top Keywords

organic matter
16
changes soil
8
soil dissolved
8
dissolved organic
8
relationship microbial
8
hailuogou glacier
8
glacier forefield
8
forefield chronosequence
8
glacier-retreated areas
8
vegetation succession
8

Similar Publications

Perovskite materials have revolutionized optoelectronics by virtue of their tunable bandgaps, exceptional optoelectronic properties, and structural flexibility. Notably, the state-of-the-art performance of perovskite solar cells has reached 27%, making perovskite materials a promising candidate for next-generation photovoltaic technology. Although numerous reviews regarding perovskite materials have been published, the existing reviews generally focus on individual material systems (e.

View Article and Find Full Text PDF

The construction of strong metal-support interactions (SMSI) is an effective strategy to enhance and control heterogeneous catalysts. However, conventional methods require pre-synthesized metal-loaded catalysts, followed by SMSI formation via high-temperature treatment under oxidative/reductive atmospheres, adsorbate-mediated treatment, and photo-treatment, adding complexity to catalyst synthesis and hindering continuous interfacial tuning. In this work, a "photobreeding" method is employed to treat ZnCdS, leveraging the UV-induced photochromic reaction of ZnS to generate metallic Zn at room temperature, while CdS remains inert.

View Article and Find Full Text PDF

Defect Engineering-Driven Electron Spin Polarization and Charge Transfer in MOFs for Enhanced Sonocatalytic Therapy.

Adv Mater

September 2025

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical

Sonocatalytic therapy (SCT) is a non-invasive tumor treatment modality that utilizes ultrasound (US)- activated sonocatalysts to generate reactive oxygen species (ROS), whose production critically dependent on the electronic structural properties of the catalytic sites. However, the spin state, which is a pivotal descriptor of electronic properties, remains underappreciated in SCT. Herein, a Ti-doped zirconium-based MOF (Ti-UiO-66, denoted as UTN) with ligand-deficient defects is constructed for SCT, revealing the important role of the electronic spin state in modulating intrinsic catalytic activity.

View Article and Find Full Text PDF

The photovoltaic performance of CuZnSn(S,Se) is limited by open-circuit voltage losses (ΔV) in the radiative (ΔV) and non-radiative (ΔV) limits, due to sub-bandgap absorption and deep defects, respectively. Recently, several devices with power conversion efficiencies approaching 15% have been reported, prompting renewed interest in the possibility that the key performance-limiting factors have been addressed. In this work, we analyze the sources of ΔV in these devices and offer directions for future research.

View Article and Find Full Text PDF

Identifying the sources of sedimentary organic matter (OM) is essential for understanding pollution dynamics and guiding effective management in estuarine environments. This study proposes a novel and transferable source tracking framework that integrates Fourier transform infrared (FTIR) and fluorescence spectroscopy with a principal component analysis-absolute principal component score-multiple linear regression (PCA-APCS-MLR) receptor model to apportion OM sources in surface sediments across four South Korean estuaries with contrasting land use. Five new infrared-based indices (IRIs), developed from diagnostic FTIR absorbance features of water-extractable organic matter (WEOM), were designed to capture source-specific functional group compositions linked to terrestrial, synthetic, and petroleum-derived OM.

View Article and Find Full Text PDF