Sleep and memory: The impact of sleep deprivation on transcription, translational control, and protein synthesis in the brain.

J Neurochem

Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.

Published: July 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In countries around the world, sleep deprivation represents a widespread problem affecting school-age children, teenagers, and adults. Acute sleep deprivation and more chronic sleep restriction adversely affect individual health, impairing memory and cognitive performance as well as increasing the risk and progression of numerous diseases. In mammals, the hippocampus and hippocampus-dependent memory are vulnerable to the effects of acute sleep deprivation. Sleep deprivation induces changes in molecular signaling, gene expression and may cause changes in dendritic structure in neurons. Genome wide studies have shown that acute sleep deprivation alters gene transcription, although the pool of genes affected varies between brain regions. More recently, advances in research have drawn attention to differences in gene regulation between the level of the transcriptome compared with the pool of mRNA associated with ribosomes for protein translation following sleep deprivation. Thus, in addition to transcriptional changes, sleep deprivation also affects downstream processes to alter protein translation. In this review, we focus on the multiple levels through which acute sleep deprivation impacts gene regulation, highlighting potential post-transcriptional and translational processes that may be affected by sleep deprivation. Understanding the multiple levels of gene regulation impacted by sleep deprivation is essential for future development of therapeutics that may mitigate the effects of sleep loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10919414PMC
http://dx.doi.org/10.1111/jnc.15787DOI Listing

Publication Analysis

Top Keywords

sleep deprivation
44
acute sleep
16
sleep
14
gene regulation
12
deprivation
11
protein translation
8
multiple levels
8
gene
5
sleep memory
4
memory impact
4

Similar Publications

Acute sleep deprivation (SD) rapidly alleviates depression, addressing a critical gap in mood disorder treatment. Rapid eye movement SD (REM SD) modulates the excitability of vasoactive intestinal peptide (VIP) neurons, influencing the synaptic plasticity of pyramidal neurons. However, the precise mechanism remains undefined.

View Article and Find Full Text PDF

The associated factors for exertional heat stroke among amateur golfers remain poorly understood. We conducted a case-control study to examine exertional heat exhaustion (EHE) - related symptoms among amateur golfers in Japan using a self-administered questionnaire. Retrospective case-control study design.

View Article and Find Full Text PDF

Assessing adult zebrafish despair-like behaviors in the small vertical cylinder immobility test (VCIT).

J Neurosci Methods

September 2025

Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Key Laboratory on Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.

Background: Affective disorders represent a major global health burden. Animal models are widely used for modeling brain disorders and neuroactive drug discovery. A novel powerful tool in translational neuroscience research, zebrafish provide multiple behavioral assays relevant to anxiety-like and depression-related conditions (including despair-like behavior, a common feature in depression).

View Article and Find Full Text PDF

Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.

View Article and Find Full Text PDF

Reduced sleep irregularity does not impact peripheral vascular function before or following total sleep deprivation.

J Appl Physiol (1985)

September 2025

Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, United States of America.

Consistent sleep patterns are associated with better cardiovascular health, while sleep loss is known to impair vascular function. This study examined whether consistent sleep could improve vascular function and mitigate the negative effect of 25-hour total sleep deprivation. Sixteen healthy adults (10 females, 6 males; 34 ± 9 years; BMI: 25 ± 3 kg/m²) completed a randomized crossover study involving two 12-night sleep conditions, habitual sleep and a consistent sleep/wake schedule that were separated by a 1-2-week washout.

View Article and Find Full Text PDF