A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Targeted Computed Tomography Visualization and Healing of Inflammatory Bowel Disease by Orally Delivered Bacterial-Flagella-Inspired Polydiiododiacetylene Nanofibers. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate diagnosis and timely therapeutic intervention of inflammatory bowel disease (IBD) is essential in preventing the progression of the disease, although it still represents an insurmountable challenge. Here we report the design of bacterial-flagella-inspired polydiiododiacetylene (PIDA) nanofibers and its performance in targeted computed tomography (CT) imaging and on-demand therapeutic intervention of IBD. With a morphology mimicking bacterial flagella, PIDA nanofibers attach on the mucus layer of the gastrointestinal (GI) tract after oral administration, evenly distributing on the GI surface to portray the GI lining under CT scan within 2 h. PIDA can retain for a longer time in the damaged mucosa at the inflamed lesions than in normal GI tissues to enable the targeted CT visualization of IBD. PIDA also scavenges reactive oxygen species and ameliorates gut dysbiosis attributed to its iodine-substituted polydiacetylene structure, so that the enriched PIDA nanofibers at the targeted IBD lesions can alleviate the inflammation while maintaining the gut microbiota homeostasis, thus promoting the rebalance of GI microenvironment and the mucosal healing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c12154DOI Listing

Publication Analysis

Top Keywords

pida nanofibers
12
targeted computed
8
computed tomography
8
inflammatory bowel
8
bowel disease
8
bacterial-flagella-inspired polydiiododiacetylene
8
therapeutic intervention
8
pida
5
targeted
4
tomography visualization
4

Similar Publications