98%
921
2 minutes
20
Humidity-responsive materials have attracted increasing attention for their potential use in various applications, e.g., sensors, soft robotics, and human-machine interfaces. Much effort has been focused on the use of ionic liquids for the construction of humidity-responsive sensors; yet, not enough attention has been paid on the susceptibility of the used poly(ionic liquid)s to microorganisms. This is especially relevant to the wide use of the polymers for biomedical applications, e.g., wearable body-condition sensors or healthcare control systems. We herein describe the development of dual functional, self-standing, monolayer antimicrobial membranes derived from cross-linked copolymers functionalized with ionic liquids. In a first step, random copolymers of poly(4-vinylbenzyl -alkyl imidazolium chloride--acrylic acid), P(VBCImC--AA20), were synthesized bearing aliphatic chains of different lengths (where = 1, 4, 8, 12, 16 carbon atoms) to investigate the effect of hydrophobicity/hydrophilicity on the humidity-responsive properties of the copolymer and its antimicrobial activity. The aforementioned copolymers were later blended with the complementary reactive copolymers of poly(cetyl trimethylammonium 4-styrene sulfonate--glycidyl methacrylate), P(SSAmC--GMA20), to provide highly stable films and coatings through thermal cross-linking. The membrane P(VBCImC--AA20)/P(SSAmC--GMA20) with a molar ratio of 3:1 (mol AA/mol GMA) exhibited immediate and high response to moisture through folding or flipping motions when placed on a wet filter paper or on the palm of a hand. The inhibition of growth for selected bacterial species (, , and ) on the copolymer membranes was dependent on the length of the imidazolium alkyl chain and the species. Additionally, in the case of the cross-linked P(VBCImC--AA20)/P(SSAmC--GMA20) membranes, the overall efficacy was very high against all microorganisms tested, which, combined with their high humidity responsiveness, enables their potential application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c01017 | DOI Listing |
Mem Inst Oswaldo Cruz
September 2025
Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil.
Background: Parasite antigens and plasma lipopolysaccharide (LPS) levels from luminal origin in visceral leishmaniasis (VL) patients are correlated with cellular activation and low CD4+T cell counts.
Objectives: Our aim was to verify whether Leishmania infantum infection damages the intestinal barrier and whether combination antimonial/antibiotic contributes to the reduction of LPS levels and immune activation.
Methods: Golden hamsters were grouped in: G1-uninfected; G2-infected with L.
Lasers Med Sci
September 2025
Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Microbial contamination of absorbable collagen membranes used in guided bone regeneration (GBR) may compromise healing outcomes. This study aimed to investigate whether the minimum inhibitory concentration (MIC) of hydrogen peroxide (HO) can improve the antibacterial effect of indocyanine green (ICG)-mediated antimicrobial photodynamic therapy (PDT) on absorbable collagen membranes while reducing the need for high HO concentrations. A laboratory-based model was developed using Streptococcus sanguinis and Staphylococcus aureus.
View Article and Find Full Text PDFPhytopathology
September 2025
Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;
Osthole exhibits strong inhibitory activity against phytopathogenic fungi; however, its antifungal mechanism remains unclear. This study assessed osthole's inhibitory effects on several phytopathogenic fungi, revealing a half-maximal effective concentration of 70.03 μg/ml against the hyphal growth of .
View Article and Find Full Text PDFMed Int (Lond)
August 2025
Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.
Punicalagin, a polyphenolic compound extracted from pomegranate peel, has received increasing attention in recent years due to its antibacterial and antiviral properties. Punicalagin is capable of inhibiting bacterial growth at sub-inhibitory concentrations by affecting cell membrane formation, disrupting membrane integrity, altering cell permeability, affecting efflux pumps, interfering with quorum sensing and influencing virulence factors. Additionally, punicalagin inhibits viruses by modulating enzyme activity, interacting with viral surface proteins, affecting gene expression, blocking viral attachment, disrupting virus receptor interaction and inhibiting viral replication.
View Article and Find Full Text PDFiScience
September 2025
State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
Super austenitic stainless steels (SASS) face challenges like galvanic corrosion and antibacterial performance when welded to carbon steel (Q235) in marine environments. This study demonstrates that adding 1.0 wt% cerium (Ce) to SASS refines the heat-affected zone (HAZ) grain structure (from 7 μm to 2 μm), suppresses detrimental σ-phase precipitation, and forms a dense oxide film.
View Article and Find Full Text PDF