Role of Berberine as a Potential Efflux Pump Inhibitor against MdfA from Escherichia coli: and Studies.

Microbiol Spectr

College of Biochemical Engineering, Beijing Union University, Beijing, China.

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Infections by Gram-negative pathogens are usually difficult to manage due to the drug export by efflux pumps. With the evolution and horizontal transfer of efflux pumps, there is an urgent need to discover safe and effective efflux pump inhibitors. Here, we found that the natural compound berberine (BBR), a traditional medicine for intestinal infection, is an inhibitor against the major facilitator superfamily (MFS) efflux pump MdfA in Escherichia coli. The impact of BBR on MdfA was evaluated in a recombinant E. coli reporter strain. We demonstrated that low levels of BBR significantly increased intracellular ciprofloxacin concentrations and restored antibiotic susceptibility of the reporter strain. At the same time, we conducted molecular dynamics simulations to investigate the mechanisms of BBR's effect on MdfA. Our data indicated that BBR can aggregate to the periplasmic and cytoplasmic sides of MdfA in both of its inward and outward conformations. Protein rigidities were affected to different degrees. More importantly, two major driving forces for the conformational transition, salt bridges and hydrophilic interactions with water, were changed by BBR's aggregation to MdfA, which affected its conformational transition. In summary, our data provide evidence for the extended application of BBR as an efflux pump inhibitor at a clinically meaningful level. We also reveal the mechanisms and provide insights into BBR's effect on the reciprocal motion of MdfA. In this work, we evaluated the role of berberine (BBR) as an inhibitor of the MFS efflux pump MdfA from E. coli. We demonstrated that low levels of BBR significantly increased intracellular ciprofloxacin concentrations and restored antibiotic susceptibility of the reporter strain. Molecular dynamics simulations revealed the effect of BBR on the conformational transition of MdfA. Our data suggested that driving forces for MdfA's conformational transition were affected by BBR and provided evidence for BBR's extended application as an effective inhibitor of MdfA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100983PMC
http://dx.doi.org/10.1128/spectrum.03324-22DOI Listing

Publication Analysis

Top Keywords

efflux pump
20
conformational transition
16
reporter strain
12
mdfa
10
bbr
9
role berberine
8
pump inhibitor
8
inhibitor mdfa
8
mdfa escherichia
8
escherichia coli
8

Similar Publications

Bacterial infections have emerged as a critical global health concern. More specifically, antibiotic resistant infections, severely compromise the effectiveness of standard antimicrobial therapies and prompting the exploration of alternative strategies. Among these, nanocarriers (NCs) have gained considerable interest due to their ability to improve drug solubility, stability, and targeted delivery while minimizing off-target effects.

View Article and Find Full Text PDF

Design, synthesis and biological evaluation of 3,3-dimethyl-2,3,4,9-tetrahydro-1H-carbazole derivatives as AcrB inhibitors with potent antibiofilm effect for reversing bacterial multidrug resistance.

Bioorg Chem

September 2025

Department of Medicinal Chemistry, Shandong Key Laboratory of Druggability Optimization and Evaluation for Lead Compounds, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China. Electronic address:

A series of novel 3,3-dimethyl-2,3,4,9-tetrahydro-1H-carbazole derivatives were rationally designed, synthesized and evaluated for their biological activity as AcrB inhibitors. The compounds were assessed for their antibiotic potentiating effects, followed by evaluation of Nile Red efflux inhibition, and off-target effects including activity on the outer and inner bacterial membranes. Ten compounds potentiated antibiotic activity at sub-inhibitory concentrations, reducing the minimum inhibitory concentrations (MICs) of at least one of the tested antibiotics by at least 8-fold, with three derivatives (7c, 11g, and 11i) achieving 32-fold MIC reductions at 128 μg/mL.

View Article and Find Full Text PDF

Objectives: (formerly ) is a leading cause of invasive candidiasis and rapidly develops antifungal drug resistance during treatment. An increasing number of clinical isolates shows reduced susceptibility to echinocandins and azoles, leaving amphotericin B (AMB) as a last therapeutic option. Resistance of to this drug is rare and its underlying mechanisms are still not fully understood.

View Article and Find Full Text PDF

Novel mutations associated with clofazimine resistance in Mycobacterium intracellulare.

J Antimicrob Chemother

September 2025

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China-Singapore Belt and Road Joint Laboratory on Infection Research and Drug Development, National Medical Center for Infectious Diseases, Collaborative Innovation Cen

Background: Clofazimine is a promising repurposed drug for treating Mycobacterium avium-intracellulare complex pulmonary disease, but its resistance mechanisms in Mycobacterium intracellulare remain poorly understood.

Objective: This study aims to elucidate the resistance mechanisms of M. intracellulare to clofazimine.

View Article and Find Full Text PDF

The recent discovery that the model multidrug efflux pump from , EmrE, can perform multiple types of transport suggests that this may be a compelling target for therapeutic intervention. Initial studies have identified several small-molecule substrates capable of inducing transporter-dependent susceptibility rather than the well-known antibiotic resistance phenotype. However, many questions regarding the underlying mechanism and regulation of this transporter still remain.

View Article and Find Full Text PDF