Severity: Warning
Message: opendir(/var/lib/php/sessions): Failed to open directory: Permission denied
Filename: drivers/Session_files_driver.php
Line Number: 365
Backtrace:
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Hexokinase1 (HXK1) is a bifunctional enzyme that plays indispensable roles in plant growth, nitrogen utilization, and stress resistance. However, information on the HXK family members of strawberries and their functions in glucose sensing and metabolic regulation is scarce. In the present study, four HXKs were firstly identified in the genome of and . The conserved domains of the HXK1s were confirmed, and a site-directed mutation (S177A) was introduced into the FpHXK1. , which shares the highest identity with the was able to restore the glucose sensitivity and developmental defects of the Arabidopsis mutant, but not its kinase-activity-impaired mutant ( ). The transcription of was dramatically up-regulated under PEG-simulated drought stress conditions. The inhibition of the HXK kinase activity delayed the strawberry plant's responses to drought stress. Transient overexpression of the and its kinase-impaired mutant differentially affected the level of glucose, sucrose, anthocyanins, and total phenols in strawberry fruits. All these results indicated that the FpHXK1, acting as a glucose sensor, was involved in drought stress response and sugar metabolism depending on its kinase activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9911861 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1069830 | DOI Listing |
BMC Plant Biol
September 2025
Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt.
Background: Because of their ecological, aesthetic, and beneficial characteristics, native desert plants are highly significant. They can also be utilized in landscape architecture, particularly in environments with harsh conditions. The present study aims to evaluate the potential utilization of the wild desert plants Pancratium maritimum L.
View Article and Find Full Text PDFPlant Cell Rep
September 2025
Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
Genome doubling did not enhance drought tolerance in alfalfa, but may set the stage for long-term adaptation to drought through a novel transcriptional landscape. Whole genome duplication (WGD) has been shown to enhance stress tolerance in plants. Cultivated alfalfa is autotetraploid, but diploid wild relatives are important sources of genetic variation for breeding.
View Article and Find Full Text PDFPlant Biol (Stuttg)
September 2025
Department of Botany and Center for Biotechnology, Plant Physiology Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
Erythrina velutina is a tree that thrives in the shallow rocky soils of the dry and hot Caatinga, a unique Brazilian biome. It is rich in specialized metabolites with medicinal properties. Indeed, alkaloids and flavonoids are phytochemical markers of the genus.
View Article and Find Full Text PDFFunct Integr Genomics
September 2025
Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.
View Article and Find Full Text PDFFront Plant Sci
August 2025
School of Biological Sciences, The University of Western Australia, Perth, Australia.
Agriculture is extremely vulnerable to climate change and crop production is severely hampered by climate extremes. Not only does it cost growers over US$170Bln in lost production, but it also has major implications for global food security. In this study, we argue that, under current climate scenarios, agriculture in the 21 century will become saline, severely limiting (or even making impossible) the use of traditional cereal crops for human caloric intake.
View Article and Find Full Text PDF