98%
921
2 minutes
20
Photocatalyst with excellent semiconductor properties is the key point to realize the efficient photocatalytic hydrogen evolution (PHE). As a representative binary metal sulfide (BMS) semiconductor, cadmium sulfide (CdS) possesses suitable bandgap of 2.4 eV and negative conduction band potential, which has a great potential to realize efficient visible-light PHE performance. In this work, CdS with unique cubic/hexagonal phase junction is facilely synthesized through a sulfur-rich butyldithiocarbamate acid (BDCA) solution process. The results illustrate that the phase junction can efficiently enhance the separation and transfer of photogenerated electron-hole pairs, resulting in an excellent PHE performance. In addition, the sulfur-rich property of BDCA solution leads to the absence of additional sulfur sources during the synthesis of CdS photocatalyst, which greatly simplifies the fabrication process. The optimal PHE rate of the BDCA-synthesized phase junction CdS photocatalyst is 7.294 mmol g h and exhibits a favorable photostability. Moreover, density function theory calculations indicated that the apparent redistribution of charge density in the cubic/hexagonal phase junction regions gives a suitable hydrogen adsorption capacity, which is responsible for the enhanced PHE activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202207623 | DOI Listing |
Appl Biochem Biotechnol
September 2025
Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
Leptospirosis is a zoonotic disease affecting humans in the tropical and temperate regions. Considerably high mortality rate (60 per 1000 adult) and associated morbidity necessitate the need for efficient diagnostic and therapeutic approaches for this disease. Proteins that play crucial roles in the invasion/pathogenesis are potential candidates for the diagnosis/therapeutics.
View Article and Find Full Text PDFLab Chip
September 2025
Department of Biomedical Engineering, Lund University, Lund, Sweden.
Droplet splitting plays an important role in droplet microfluidics by providing precise control over droplet size, which is essential for applications such as single-cell analysis, biochemical reactions, and the fabrication of micro- and nanosized material. Conventional methods of droplet splitting using obstructions or junctions in the microchannel have a clear limitation that the split ratio for a particular device remains fixed, while existing active splitting methods are constrained by low flow rates, the need for complex systems, or limitations to specific droplet types. In this study, we demonstrate that droplet splitting can be achieved simply using a one-dimensional standing-wave field excited within a microchannel.
View Article and Find Full Text PDFAdv Drug Deliv Rev
September 2025
Department of Chemistry, Purdue University, West Lafayette 47907, IN 47907, USA. Electronic address:
DNA nanotechnology, a cutting-edge field that constructs sophisticated DNA-based nanostructures by harnessing the unparalleled programmability of DNA, has evolved into a powerful tool for applications in therapy, biosensing, logic computation, and more. This review outlines the fundamental strategies for constructing DNA nanostructures, beginning with the design of basic building blocks such as small, symmetric tiles (e.g.
View Article and Find Full Text PDFMedicine (Baltimore)
August 2025
Department of Medical Imaging, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China.
This study aims to construct a noninvasive preoperative prediction model for lymph node metastasis in adenocarcinoma of esophagogastric junction (AEG) using computed tomography (CT) texture characterization and machine learning. We analyzed clinical and imaging data from 57 patients with preoperative CT enhancement scans and pathologically confirmed AEG. Lesions were delineated, and texture features were extracted from arterial phase and venous phase CT images using 3D-Slicer software.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Medicine, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, USA 02118.
Study Question: Can personal lubricants effectively deliver the sperm-agglutinating Human Contraception Antibody (HCA) to achieve on-demand male contraception?
Summary Answer: This study demonstrates that several water-based lubricants can effectively deliver bioactive HCA, and that a dimethicone-containing silicone lubricant can be modified into a stable emulsion suitable for antibody delivery.
What Is Known Already: The HCA-based vaginal film ZB-06 was shown to be safe and effective in a Phase I clinical trial for female contraception. Male contraceptive options remain limited.